Search results

1 – 10 of 357
Article
Publication date: 9 October 2018

Zhu Feng, Shaotao Zhi, Lei Guo, Chong Lei and Yong Zhou

This paper aims to investigate magnetic field anneal in micro-patterned Co-based amorphous ribbon on giant magneto-impedance (GMI) effect enhancement.

Abstract

Purpose

This paper aims to investigate magnetic field anneal in micro-patterned Co-based amorphous ribbon on giant magneto-impedance (GMI) effect enhancement.

Design/methodology/approach

The amorphous ribbons were annealed in transverse and longitudinal magnetic field. The influence of different field annealing directions on GMI effect and impedance Z, resistance R and reactance X with a series of line width have been deeply analyzed.

Findings

In comparison with GMI sensors microfabricated by unannealed and transversal field annealed ribbons, GMI sensor which was designed and microfabricated by longitudinal field anneal ribbon performs better. The results can be explained by the domain wall motion and domain rotation during annealing process and the geometric structure of Co-based GMI sensor. In addition, shrinking the line width of GMI sensor can promote GMI effect significantly because of the effect of demagnetizing field, and the optimum GMI ratio is 209.7 per cent in longitudinal field annealed GMI sensor with 200 μm line width.

Originality/value

In conclusion, annealing in longitudinal magnetic field and decreasing line width can enhance GMI effect in micro-patterned Co-based amorphous ribbon.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 April 2024

Zhenbao Wang, Zhen Yang, Mengyu Liu, Ziqin Meng, Xuecheng Sun, Huang Yong, Xun Sun and Xiang Lv

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of…

Abstract

Purpose

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of this paper is to further optimize the line spacing to improve the performance of meanders for sensor application.

Design/methodology/approach

The model of GMI effect of microribbon with meander type is established. The effect of line spacing (Ls) on GMI behavior in meanders is analyzed systematically.

Findings

Comparison of theory and experiment indicates that decreasing the line spacing increases the negative mutual inductance and a consequent increase in the GMI effect. The maximum value of the GMI ratio increases from 69% to 91.8% (simulation results) and 16.9% to 51.4% (experimental results) when the line spacing is reduced from 400 to 50 µm. The contribution of line spacing versus line width to the GMI ratio of microribbon with meander type was contrasted. This behavior of the GMI ratio is dominated by the overall negative contribution of the mutual inductance.

Originality/value

This paper explores the effect of line spacing on the GMI ratio of meander type by comparing the simulation results with the experimental results. The superior line spacing is found in the identical sensing area. The findings will contribute to the design of high-performance micropatterned ribbon with meander-type GMI sensors and the establishment of a ribbon-based magnetic-sensitive biosensing system.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 May 2009

K. Zakrzewski, B. Tomczuk and D. Koteras

The purpose of this paper is to examine the calculation of magnetic field distribution in the modular amorphous transformers under short‐circuit state including the flux by the…

Abstract

Purpose

The purpose of this paper is to examine the calculation of magnetic field distribution in the modular amorphous transformers under short‐circuit state including the flux by the voltage supplying. The magnetically asymmetrical transformer (amorphous asymmetrical transformer – AAT) has been compared also with the symmetrical one (amorphous symmetrical transformer – AST).

Design/methodology/approach

3D field problems were analyzed with total ψ and reduced ϕ potentials within the finite element method (FEM). The calculated fluxes have been verified experimentally.

Findings

The field method which includes voltage excitation is helpful for flux density (B) calculation and winding reactances determination, as well. Calculations and tests yield similar flux distributions in both AST and AAT constructions. One should emphasize that AAT is better for manufacturing and repairing.

Research limitations/implications

Owing to very thin (80 μm) amorphous ribbon, the solid core has been assumed for computer simulations.

Originality/value

Employment of a field method for calculation of the innovative three‐phase amorphous modular transformers. New construction of amorphous transformer, i.e. AAT, has been manufactured at Opole University of Technology.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 October 2020

Zhu Feng, Shaotao Zhi, Xuecheng Sun, Lili Yan, Cui Liu and Chong Lei

This paper aims to investigate the influence of structure parameters on giant-magnetoimpedance (GMI) effect measured by non-contact method.

130

Abstract

Purpose

This paper aims to investigate the influence of structure parameters on giant-magnetoimpedance (GMI) effect measured by non-contact method.

Design/methodology/approach

The GMI sensor contains a Co-based internal magnetic core fabricated by laser cutting and an external solenoid. The influences of magnetic permeability of magnetic core and structure parameters on GMI effect were calculated in theoretical model. The output impedance, resistance, reactance and GMI ratio were measured by non-contact method using impedance analyzer.

Findings

Enhancing external magnetic field intensity can decrease the magnetic permeability of core, which has vital influences on the magnetic property and the output response of GMI sensor. In addition, increasing the width of magnetic core and the number of solenoid turns can increase the maximum GMI ratio. The maximum GMI ratio is 3,230% with core width of 6 mm and solenoid turns of 200.

Originality/value

Comparing with traditional contact-measured GMI sensor, the maximum GMI ratio and the magnetic field sensitivity are improved and the power consumption is decreased in non-contact measured GMI sensor. GMI sensor measured by non-contact method has a wide range of potential applications in ultra-sensitive magnetic field detection.

Details

Sensor Review, vol. 40 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 November 2017

Jiliang Mu, Zhang Qu, Zongmin Ma, Shaowen Zhang, Yunbo Shi, Jian Gao, Xiaoming Zhang, Huiliang Cao, li Qin, Jun Liu and Yanjun Li

This study aims to fabricate and manipulate ensemble spin of negative nitrogen-vacancy (NV) centres optimally for future solid atomic magnetometers/gyroscope. Parameters for…

Abstract

Purpose

This study aims to fabricate and manipulate ensemble spin of negative nitrogen-vacancy (NV) centres optimally for future solid atomic magnetometers/gyroscope. Parameters for sample preparation most related to magnetometers/gyroscope are, in particular, the concentration and homogeneity of the NV centres, the parameters’ microwave antenna of resonance frequency and the strength of the microwave on NV centres. Besides, the abundance of other impurities such as neutral NV centres (NV0) and substitutional nitrogen in the lattice also plays a critical role in magnetic sensing.

Design/methodology/approach

The authors succeeded in fabricating the assembly of NV centres in diamond and they determined its concentration of (2-3) × 1016 cm−3 with irradiation followed by annealing under a high temperature condition. They explored a novel magnetic resonance approach to detect the weak magnetic fields that takes advantage of the solid-state electron ensemble spin of NV centres in diamond. In particular, the authors set up a magnetic sensor on the basis of the assembly of NV centres. They succeeded in fabricating the assembly of NV centres in diamond and determined its concentration. They also clarified the magnetic field intensity measured at different positions along the antenna with different lengths, and they found the optimal position where the signal of the magnetic field reaches the maximum.

Findings

The authors mainly reported preparation, initialization, manipulation and measurement of the ensemble spin of the NV centres in diamond using optical excitation and microwave radiation methods with variation of the external magnetic field. They determined the optimal parameters of irradiation and annealing to generate the ensemble NV centres, and a concentration of NV centres as high as 1016 cm−3 in diamond was obtained. In addition, they found that sensitivity of the magnetometer using this method can reach as low as 5.22 µT/Hz currently.

Practical implications

This research can shed light on the development of an atomic magnetometer and a gyroscope on the basis of the ensemble spin of NV centres in diamond.

Social implications

High concentration spin of NV in diamond is one of the advantages compared with that of the atomic vapor cells, because it can obtain a higher concentration. When increasing the spin concentration, the spin signal is easy to detect, and macro-atomic spin magnetometer become possible. This research is the first step for solid atomic magnetometers with high spin density and high sensitivity potentially with further optimization. It has a wide range of applications from fundamental physics tests, sensor applications and navigation to detection of NMR signals.

Originality/value

As has been pointed out, in this research, the authors mainly worked on fabricating NV centres with high concentration (1015-1016 cm−3) in diamond by using optimal irradiation and annealing processes, and they quantitatively defined the NV concentration, which is important for the design of higher concentration processes in the magnetometer and gyroscope. Until now, few groups can directly define the NV concentration. Besides, the authors optimized the microwave antenna parameters experimentally and explored the dependence between the splitting of the magnetic resonance and the magnetic fields, which dictated the minimum detectable magnetic field.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Alejandro Garza-Caballero, Gina Idárraga-Ospina, Nora A. García-Gomez, Francisco Aurelio Pérez-González, Maribel De-la-Garza-Garza, Alfredo Artigas, Alberto Monsalve, Rafael Colás and Nelson Federico Garza-Montes-de-Oca

High silicon amorphous steels are gaining preference as the material of choice for the fabrication of the core of low and medium power electrical transformers because they present…

Abstract

Purpose

High silicon amorphous steels are gaining preference as the material of choice for the fabrication of the core of low and medium power electrical transformers because they present a better electromagnetic behaviour compared to that offered by common grain-oriented and non-oriented high silicon steels. This study aims to investigate the effects that the environmental conditions present during the high temperature annealing of cores exert on the surface oxidation and electromagnetic changes experienced by a commercial amorphous steel alloy.

Design/methodology/approach

The effect of environmental impact on the correct development of annealing practices during the manufacture process of amorphous steel cores used in distribution transformers was studied by the development of an oxidation reactor. With this installation, it was possible to simulate environmental conditions that could affect the surface of magnetic cores made from amorphous steel.

Findings

It was found that: the surface oxidation of amorphous steels affects their electromagnetic behaviour, environmentally induced surface degradation can be modelled at laboratory scale and oxide formation does not affect the amorphous condition of the alloy.

Originality/value

The effect of surface oxidation induced by the existence of water vapour in the annealing process of cores made from amorphous steels and its impact on the electromagnetic behavior of these alloys has been barely studied.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2001

Bernhard Brandstätter and Christian Magele

Considers, without loss of generality, a simple linear problem, where in a certain domain the magnetic field, generated by infinitely long conductors, whose locations as well as…

Abstract

Considers, without loss of generality, a simple linear problem, where in a certain domain the magnetic field, generated by infinitely long conductors, whose locations as well as the currents are unknown, has to meet a certain figure. The problem is solved by applying hierarchical simulated annealing, which iteratively reduces the dimension of the search space to save computational cost. A Gauss‐Newton scheme, making use of analytical Jacobians, preceding a sequential quadratic program (SQP), will be applied as a second approach to tackle this severely ill‐posed problem. The results of these two techniques will be analyzed and discussed and some comments on future work will be given.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 March 2017

Kevin McMeekin, Frédéric Sirois, Maxime Tousignant and Philippe Bocher

Surface heat treatment by induction heating (10-100 kHz) requires precise prediction and control of the depth of the induced phase transformation. This paper aims at identifying…

Abstract

Purpose

Surface heat treatment by induction heating (10-100 kHz) requires precise prediction and control of the depth of the induced phase transformation. This paper aims at identifying common issues with the measurement and modeling of magnetic properties used in induction heating simulations, and it proposes ways to improve the situation.

Design/methodology/approach

In particular, it is demonstrated how intrinsic magnetic properties (i.e. the B-H curve) of a sample can change during the magnetic characterization process itself, due to involuntary annealing of the sample. Then, for a B-H curve that is supposed perfectly known, a comparison is performed between multiple models, each one representing the magnetic properties of steel in time-harmonic (TH) finite element method simulations. Finally, a new model called “power-equivalent model” is proposed. This model provides the best possible accuracy for a known nonlinear and hysteretic B-H curve used in TH simulations.

Findings

By carefully following the guidelines identified in this paper, reduction of errors in the range of 5-10 per cent can be achieved, both at the experimental and modeling levels. The new “power-equivalent model” proposed is also expected to be more generic than existing models.

Originality/value

This paper highlights common pitfalls in the measurement and modeling of magnetic properties, and suggests ways to improve the situation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2001

P. Girdinio and M. Nervi

The present work is about the development of automatic techniques for the optimisation of active shields for stationary magnetic fields. An active magnetic shield is basically…

Abstract

The present work is about the development of automatic techniques for the optimisation of active shields for stationary magnetic fields. An active magnetic shield is basically made by a number of coils, fed with suitably chosen currents. In this way a magnetic field as equal as possible to the disturbing one is generated. The resulting effect is the reduction of the disturbing field in the area of interest. To achieve reasonable results a stochastic optimisation procedure has been used to optimise the non linear part of the problem (i.e. the geometry of shielding coils); the linear part can be optimised “on the fly” in a much more straightforward way through the solution of a least squares problem. The stochastic optimiser used is based on the very fast simulated reannaling (VFSR), allowing to get a good optimum with a much reduced sampling of the objective function. It is used combining it with a deterministic optimiser (Nelder‐Mead simplex method), to get a faster optimisation process as soon as the valley of the global optimum is located. Basically the VFSR has a different point generating function and a different cooling schedule with respect to the standard Boltzmann annealing, but the concept is clearly the same.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 357