Search results

1 – 10 of over 3000
Article
Publication date: 14 May 2019

Ravisha M., I.S. Shivakumara and Mamatha A.L.

The onset of convection in a ferrofluid-saturated porous layer has been investigated using a local thermal nonequilibrium (LTNE) model by allowing the solid phase to transfer heat…

Abstract

Purpose

The onset of convection in a ferrofluid-saturated porous layer has been investigated using a local thermal nonequilibrium (LTNE) model by allowing the solid phase to transfer heat via a Cattaneo heat flux theory while the fluid phase to transfer heat via usual Fourier heat-transfer law. The flow in the porous medium is governed by modified Brinkman-extended Darcy model. The instability of the system is discussed exactly for stress-free boundaries, while for rigid-ferromagnetic/paramagnetic boundaries the results are obtained numerically using the Galerkin method. The presence of Cattaneo effect introduces oscillatory convection as the preferred mode of instability contrary to the occurrence of instability via stationary convection found in its absence. Besides, oscillatory ferroconvection is perceived when the solid thermal relaxation time parameter exceeds a threshold value and increase in its value is to hasten the oscillatory onset. The effect of different boundary conditions on the instability of the system is noted to be qualitatively same. The paper aims to discuss these issues.

Design/methodology/approach

The investigators would follow the procedure of Straughan (2013) to obtain the expression for Rayleigh number. The Brinkman-extended Darcy model is used to describe the flow in a porous medium. The investigators have used a Galerkin method to obtain the numerical results for rigid-ferromagnetic/paramagnetic boundaries, while the instability of the system is discussed exactly for stress-free boundaries.

Findings

The Cattaneo–LTNE porous ferroconvection has been analyzed for different velocity and magnetic boundary conditions. The Brinkman-extended Darcy model is used to describe the flow in a porous medium. The effect of different types of velocity and magnetic boundary conditions on the instability of the system has been highlighted. The instability of the system is discussed exactly for stress-free boundaries, while for rigid-ferromagnetic/paramagnetic boundaries the results are obtained numerically using the Galerkin method.

Originality/value

The novelty of the present paper is to combine LTNE and second sound effects in solids on thermal instability of a ferrofluid-saturated porous layer by retaining the usual Fourier heat-transfer law in the ferrofluid. The Brinkman-extended Darcy model is used to describe the flow in a porous medium. The effect of different types of velocity and magnetic boundary conditions on the instability of the system is discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 May 2021

S. Das, S. Chakraborty and R. N. Jana

This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject…

Abstract

Purpose

This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject to hydrodynamic slip and convective heating boundary conditions. The flow caused by the uniform pressure; gradient between infinite parallel plates is considered steady and fully developed. The nanoparticles; namely, copper, alumina and titanium oxide are taken with pure water as the base fluid. Viscous dissipation and Joule heating impacts are also incorporated in this investigation.

Design/methodology/approach

The reduced governing equations are solved analytically in closed form. The physical insights of noteworthy parameters on the important flow quantities are demonstrated through graphs and analyzed elaborately. The thermodynamic analysis is performed by calculating entropy generation; rate and Bejan number. A graphical comparison between solutions corresponding to NFs and regular fluid in the channel is also provided.

Findings

The analysis of the results divulges that entropy generation minimization can be achieved by an appropriate combination of the geometrical and physical parameters of thermomechanical systems. It is reported that ascent in magnetic parameter number declines the velocity profiles, while the inverse pattern is witnessed with augmentation in hydrodynamic slip parameters. The temperature dissemination declines with the growth of Biot numbers. It is perceived that the entropy generation rate lessens with an upgrade in magnetic parameter, whereas the reverse trend of Bejan number is perceived with expansion in magnetic parameter and Biot number. The important contribution of the result is that the entropy generation rate is controlled with an appropriate composition of thermo-physical parameter values. Moreover, in the presence of a magnetic field and suction/injection at the channel walls, the shear stresses at the channel walls are reduced about two times.

Practical implications

In various industrial applications, minimizing entropy generation plays a significant role. Miniaturization of entropy is the utilization of the energy of thermal devices such as micro heat exchangers, micromixers, micropumps and cooling microelectromechanical devices.

Originality/value

An attentive review of the literature discloses that quite a few studies have been conducted on entropy generation analysis of a fully developed MHD Poiseuille flow of NFs through a permeable channel subject to the velocity slip and convective heating conditions at the walls.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 September 2012

D. Piliposyan

The purpose of this paper is to investigate the problem of the existence and propagation of a surface SH wave at the interface of two magneto‐electro‐elastic half‐spaces.

Abstract

Purpose

The purpose of this paper is to investigate the problem of the existence and propagation of a surface SH wave at the interface of two magneto‐electro‐elastic half‐spaces.

Design/methodology/approach

Equations of motions for magneto‐electro‐elastic materials have been used with coupling between mechanical, electric and magnetic fields. The problem is solved for four different sets of boundary conditions.

Findings

The results show that, for appropriate choice of material parameters, a non dispersive surface wave can propagate at the interface of these media. The existence condition is easier to satisfy for an electrically closed contact or no electromagnetic contact between two half‐spaces. The existence conditions can be easily satisfied for all four sets of boundary conditions if the two half‐spaces have their main symmetry axis, both parallel to the interface and perpendicular to the propagation direction, directed in the opposite directions. In this case the SH surface wave can always propagate if the two media are identical.

Originality/value

The magneto‐electric coupling effect has extensive applications, for example in electronic packaging, acoustic devices and medical ultrasonic imaging. The results of this paper give better understanding of the effects of the boundary conditions on the propagation of SH surface waves in magneto‐electro‐elastic materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 August 2022

Rusya Iryanti Yahaya, Norihan Md Arifin, Ioan Pop, Fadzilah Md Ali and Siti Suzilliana Putri Mohamed Isa

This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic…

110

Abstract

Purpose

This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic dissipation and convective boundary condition.

Design/methodology/approach

Similarity variables are introduced and used in reducing the governing partial differential equations into a system of ordinary differential equations. A built-in bvp4c solver in MATLAB is then used in the computation of the numerical solutions for equations (7) and (8) subject to the boundary conditions (9). Then, the behavior of the flow and thermal fields of the hybrid nanofluid, with various values of controlling parameters, are analyzed.

Findings

The steady flow problem resulted in multiple (dual) solutions. A stability analysis performed to identify the stable solution applicable in practice revealed that the first solution is stable while the second solution is unstable. The skin friction coefficient and Nusselt number of the hybrid nanofluid are found to be greater than the Al2O3–H2O nanofluid. Thus, the hybrid nanofluid has a better heat transfer performance than the nanofluid. Besides that, the presence of the magnetic field, suction, convective boundary condition and the enhancement of nanoparticle volume fraction of Cu augments the skin friction coefficient and Nusselt number of the hybrid nanofluid. Meanwhile, the presence of viscous-Ohmic dissipation reduces the heat transfer performance of the fluid.

Originality/value

To the best of the authors’ knowledge, the present results are original and new for the study of the flow and heat transfer of Al2O3–Cu/H2O hybrid nanofluid past a permeable radially shrinking disk. Considerable efforts have been directed toward the study of the boundary layer flow and heat transfer over stretching/shrinking surfaces and disks because of its numerous industrial applications, such as electronic, power, manufacturing, aerospace and transportation industries. Common heat transfer fluids such as water, alumina, cuprum and engine oil have limited heat transfer capabilities due to their low heat transfer properties. In contrast, metals have higher thermal conductivities than these fluids. Therefore, it is desirable to combine the two substances to produce a heat transfer medium that behaves like a fluid but has higher heat transfer properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 January 2022

Matthias Kowalski, Martin Hanke and Christian Kreischer

Resolving eddy currents in three dimensions with finite elements, especially in geometrically complex structures, is very time consuming. Notable additional efforts will be…

Abstract

Purpose

Resolving eddy currents in three dimensions with finite elements, especially in geometrically complex structures, is very time consuming. Notable additional efforts will be required, if these eddy currents are influenced by magnetic fields arising from larger parts or range over widespread regions. The purpose of this article is to present a new sub-modelling simulation technique, based on the finite-element approach. This method offers remarkable advantages for solving this type of problems.

Design/methodology/approach

A novel sub-modeling technique is developed for the finite-element method addressing this problem by dividing the process into two steps: firstly, a simulation of a “source”-model is carried out providing magnetic field distributions within the entire domain neglecting local eddy current effects and without modeling it in full detailed geometry. A subsequent “sub”-model comprises only the region of interest in higher resolution and is solved while being constrained with boundary conditions derived from the previous source-model. An implementation in ANSYS Mechanical is carried out with the objective to validate finite-element simulation against measurement results.

Findings

The proposed simulation technique performs robustly and time efficiently. Applying this method to an end-region of a turbogenerator allows comparisons with test data of this region for validation purposes. The comparison between measured and simulated radial flux densities shows good correspondence.

Originality/value

This work is novel in many aspects: a new technique for three-dimensional (3D) finite-element method using edge-elements is introduced. To the best of the authors’ knowledge, for the first time, these 3D sub-models are compared against measurement results of an electric machine with net currents. Leveraged from this work, detailed analyses of eddy current phenomena under influences of external magnetic fields can be investigated in higher detail within shorter calculation times.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Rtibi Ahmed, Hasnaoui Mohammed and Amahmid Abdelkhalk

The purpose of this paper is to study analytically and numerically the effect of a transverse magnetic field on the separation of species induced in an inclined rectangular porous…

Abstract

Purpose

The purpose of this paper is to study analytically and numerically the effect of a transverse magnetic field on the separation of species induced in an inclined rectangular porous cavity saturated with an electrically conducting mixture.

Design/methodology/approach

The porous layer is assumed homogeneous and submitted from its long sides to uniform heat fluxes and to a magnetic field of strength B. The Darcy model combined with the Boussinesq approximation are used to study the heat and solute transfer in the medium. An analytical solution is developed on the basis of the parallel flow approximation. Numerical simulations are also performed in order to validate the analytical solution. The controlling parameters of this problem are the thermal Rayleigh number, the inclination of the enclosure, the separation parameter, the Hartmann number and the Lewis number.

Findings

For given values of the thermal Rayleigh number, the inclination of the enclosure, the separation parameter and the Lewis number, there is an optimal magnetic field which leads to a maximum of separation. At relatively high Rayleigh numbers, where convection destroys the separation process, it is possible, with an optimal choice of the Hartman number, to recover a good level of separation.

Research limitations/implications

Since the problem is governed by several parameters (five parameters), only the Darcy model was used in this study instead of the Darcy-Brinkman extended model even if the latter model allows to cover the pure fluid and Darcy porous media as limiting cases.

Practical implications

In separation experiments, it is very difficult technically to work with small Rayleigh numbers due to technical difficulties. However, the process of separations is canceled at high Rayleigh number by the strength of convection which causes a mixing in the binary mixture. This study shows that, by using adequate combinations of the controlling parameters, it becomes possible to reach a good level of separation even at relatively high Rayleigh numbers.

Originality/value

Optimum choice of the magnetic field and the inclination of the cavity may lead to a good level of the separation process. For large Lewis numbers, the separation vanishes far above and far below the optimal Ha. However, for small Lewis numbers, an important level of separation is maintained for any Ha located below the optimal value of the latter parameter.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2001

Wiesllaw Peterson

The magnetic field was applied for identification of a shape of an inaccessible boundary between substances of different magnetic properties. Taking advantage of the conception of…

Abstract

The magnetic field was applied for identification of a shape of an inaccessible boundary between substances of different magnetic properties. Taking advantage of the conception of substitute field sources a mathematical model of the problem was described by means of the potential theory and integral equations. Numerical processing of Fredholm integral equations of the first kind appearing in the above model leads to a system of ill‐posed and non‐linear algebraic equations. This results in numerical instability. The problem was solved by the use of the fixed‐point technique based on Brouwer’s theorem. A few numerical examples were illustrated for the selected shape of the investigated boundary.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 May 2020

Jinting Yang and Tong Zhang

The purpose of this paper is to propose three iterative finite element methods for equations of thermally coupled incompressible magneto-hydrodynamics (MHD) on 2D/3D bounded…

Abstract

Purpose

The purpose of this paper is to propose three iterative finite element methods for equations of thermally coupled incompressible magneto-hydrodynamics (MHD) on 2D/3D bounded domain. The detailed theoretical analysis and some numerical results are presented. The main results show that the Stokes iterative method has the strictest restrictions on the physical parameters, and the Newton’s iterative method has the higher accuracy and the Oseen iterative method is stable unconditionally.

Design/methodology/approach

Three iterative finite element methods have been designed for the thermally coupled incompressible MHD flow on 2D/3D bounded domain. The Oseen iterative scheme includes solving a linearized steady MHD and Oseen equations; unconditional stability and optimal error estimates of numerical approximations at each iterative step are established under the uniqueness condition. Stability and convergence of numerical solutions in Newton and Stokes’ iterative schemes are also analyzed under some strong uniqueness conditions.

Findings

This work was supported by the NSF of China (No. 11971152).

Originality/value

This paper presents the best choice for solving the steady thermally coupled MHD equations with different physical parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 November 2013

Alessio Monti, Luca Scorrano, Simone Tricarico, Filiberto Bilotti, Alessandro Toscano and Lucio Vegni

The purpose of this paper is to show how metamaterials with extreme values of permittivity and permeability, may be effectively used to design artificial magnetic conductors (AMC…

Abstract

Purpose

The purpose of this paper is to show how metamaterials with extreme values of permittivity and permeability, may be effectively used to design artificial magnetic conductors (AMC) at a given frequency. In particular, this paper theoretically determines, for the different polarizations of the incidence field, the conditions under which metamaterials can behave as an AMC.

Design/methodology/approach

In order to find out the required values of the constitutive parameters, this paper has done a theoretical analysis based on the transmission-line theory. The obtained analytical reflection coefficient has been particularized for the different possible polarizations of the incidence field in order to find the constitutive parameters values that this paper needs for the AMC behavior.

Findings

Depending on the polarization of the field, it is shown that different values of the constitutive parameters are needed to get AMCs. In particular, it is shown that in the case of TEM and TE polarizations, a large value of the permeability is enough to obtain an AMC boundary condition. In the case of the TM polarization, instead, the AMC boundary condition is effectively achieved by using a material with vanishing permittivity. The role of the permittivity in the three polarizations is discussed. Finally, possible implementations and applications at microwave and optical frequencies are presented.

Originality/value

The idea of using miniaturized inclusions to obtain AMCs is not completely new. However, to the authors' best knowledge, a complete and rigorous theoretical analysis showing the capabilities and the limits of this approach has not yet been presented in the open technical literature.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2008

Aldo Canova, Fabio Freschi, Maurizio Repetto and Giambattista Gruosso

The paper aims to describe the coupling of magnetostatic finite formulation of electromagnetic field with two integral methods.

Abstract

Purpose

The paper aims to describe the coupling of magnetostatic finite formulation of electromagnetic field with two integral methods.

Design/methodology/approach

The first hybrid scheme is based on Green's function applied to magnetization source while the other one is based on a magnetic scalar potential boundary element method. A comparison of the two techniques is performed on a benchmark case with analytical solution, on a 2D multiply‐connected problem and on an industrial case where measurements are available.

Findings

The proposed hybrid approaches have proved to be effective techniques to solve open boundary non‐linear magnetostatic problems. Similar convergence speed with respect to the number of unknowns is found for both schemes

Originality/value

The paper shows the effectiveness of hybrid schemes applied to the finite formulation, assessing their performances on various test cases.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 3000