Search results

1 – 10 of 268
Open Access
Article
Publication date: 5 August 2022

Muhammad Saadullah, Zhipeng Zhang and Hao Hu

The expected benefits of newly developed transportation infrastructures are the saving of travel time and further promoted transport economics. There is a need for a methodology…

Abstract

Purpose

The expected benefits of newly developed transportation infrastructures are the saving of travel time and further promoted transport economics. There is a need for a methodology of travel time estimation with acceptable robustness and practicability. Macroscopic fundamental diagram (MFD) represents the overall traffic performance at a network level by linking average flow, speed and density. MFD can be used to estimate network state and to describe various traffic management strategies. This study aims to describe the effect of new infrastructure development on the network performance using the MFD framework.

Design/methodology/approach

The scenarios of Islamabad Road network before and after the infrastructure construction were simulated, in which the floating car data set (FCD) for multiple modes was extracted. MFD has been formed for the whole region and partitioned region, which was divided on the basis of infrastructural changes. Moreover, this study has been extended to calculate travel time for multiple modes using the MFD results and the Bureau of Public Roads (BPR) function at a neighborhood level.

Findings

MFD results for the whole network showed that the speed of traffic improves after the construction of new infrastructure. The travel time estimates using MFD results were dependent on the speed estimates, whereas the estimates obtained using the BPR function were found to be dependent on the traffic volume variation during different intervals of the day. By using the FCD for multiple modes, travel time estimates for multiple modes were obtained. The BPR function method was found valid for estimating travel time of traffic stream only.

Originality/value

This paper innovatively investigates the change in network performance for pre-construction and post-construction scenarios using the MFD framework. In practice, the approach presented can be used by transportation agencies to evaluate the effect of different traffic management strategies and infrastructural changes.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 26 August 2021

Amr M. Wahaballa, Seham Hemdan and Fumitaka Kurauchi

Road pricing is an efficient strategy for managing urban traffic to relieve congestion. The macroscopic fundamental diagram (MFD), which relates the average network density and…

123

Abstract

Purpose

Road pricing is an efficient strategy for managing urban traffic to relieve congestion. The macroscopic fundamental diagram (MFD), which relates the average network density and flow, is a simple tool for assessing road pricing effects on transportation network performance. However, recent research indicates that it may have complexity (an MFD hysteresis loop), especially for city-scale networks. Although ignoring MFD hysteresis may provide inaccurate results, pricing models that consider this hysteresis are scarce. This paper aims to assess road pricing effects on network performance considering MFD hysteresis characteristics.

Design/methodology/approach

This paper evaluated different pricing strategies spatially and temporally and compared network performance based on MFD shape in the presence of MFD hysteresis loops. These strategies were developed on a multimodal (cars and buses) network using a multi-agent transport simulation (MATSim).

Findings

This study found that pricing some links for a short duration with an optimum charge calculated based on the MFD provides higher travel time savings than the previous relevant studies.

Originality/value

These findings may facilitate assessing road pricing effects on multimodal network performance considering MFD hysteresis.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 27 July 2022

Yuchuan Du, Han Wang, Qian Gao, Ning Pan, Cong Zhao and Chenglong Liu

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all…

1555

Abstract

Purpose

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all modes. A robust transportation resilience is a goal in pursuing transportation sustainability. Under this specified context, while before the perturbations, robustness refers to the degree of the system’s capability of functioning according to its design specifications on integrated modes and routes, redundancy is the degree of duplication of traffic routes and alternative modes to maintain persistency of service in case of perturbations. While after the perturbations, resourcefulness refers to the capacity to identify operational problems in the system, prioritize interventions and mobilize necessary material/ human resources to recover all the routes and modes, rapidity is the speed of complete recovery of all modes and traffic routes in the urban area. These “4R” are the most critical components of urban integrated resilience.

Design/methodology/approach

The trends of transportation resilience's connotation, metrics and strategies are summarized from the literature. A framework is introduced on both qualitative characteristics and quantitative metrics of transportation resilience. Using both model-based and mode-free methodologies that measure resilience in attributes, topology and system performance provides a benchmark for evaluating the mechanism of resilience changes during the perturbation. Correspondingly, different pre-perturbation and post-perturbation strategies for enhancing resilience under multi-mode scenarios are reviewed and summarized.

Findings

Cyber-physic transportation system (CPS) is a more targeted solution to resilience issues in transportation. A well-designed CPS can be applied to improve transport resilience facing different perturbations. The CPS ensures the independence and integrity of every child element within each functional zone while reacting rapidly.

Originality/value

This paper provides a more comprehensive understanding of transportation resilience in terms of integrated urban transport. The fundamental characteristics and strategies for resilience are summarized and elaborated. As little research has shed light on the resilience concepts in integrated urban transport, the findings from this paper point out the development trend of a resilient transportation system for digital and data-driven management.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 8 August 2018

Erman Şentürk, Safa Bozkurt Coşkun and Mehmet Tarık Atay

The purpose of the study is to obtain an analytical approximate solution for jamming transition problem (JTP) using Adomian decomposition method (ADM).

Abstract

Purpose

The purpose of the study is to obtain an analytical approximate solution for jamming transition problem (JTP) using Adomian decomposition method (ADM).

Design/methodology/approach

In this study, the jamming transition is presented as a result of spontaneous deviations of headway and velocity that is caused by the acceleration/breaking rate to be higher than the critical value. Dissipative dynamics of traffic flow can be represented within the framework of the Lorenz scheme based on the car-following model in the one-lane highway. Through this paper, an analytical approximation for the solution is calculated via ADM that leads to a solution for headway deviation as a function of time.

Findings

A highly nonlinear differential equation having no exact solution due to JTP is considered and headway deviation is obtained implementing a number of different initial conditions. The results are discussed and compared with the available data in the literature and numerical solutions obtained from a built-in numerical function of the mathematical software used in the study. The advantage of using ADM for the problem is presented in the study and discussed on the basis of the results produced by the applied method.

Originality/value

This is the first study to apply ADM to JTP.

Details

Engineering Computations, vol. 35 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2014

Andy H.F. Chow and Ying Li

This paper aims to present a linear mathematical framework for modeling and optimizing road transport infrastructure. The framework assesses and optimizes performance of existing…

1141

Abstract

Purpose

This paper aims to present a linear mathematical framework for modeling and optimizing road transport infrastructure. The framework assesses and optimizes performance of existing transport facility rather than relying on building new roads for the ever-increasing travel demand.

Design/methodology/approach

The mathematical framework is built upon a traffic model called Cell Transmission Model (CTM). CTM describes the relationship and evolution of traffic flow and concentration over space and time. The model is parsimonious and accurate in predicting traffic dynamics. More importantly, the traffic flow model is piecewise linear with which the corresponding transport facility optimization problem can be formulated as a Linear Programming (LP) problem and solved by established solution algorithm for global optimality.

Findings

We select a section on England Motorway M25 as a case study. With traffic data, we first calibrate the CTM, and we are able to produce traffic estimation with a reasonable error rate of 12 per cent. The corresponding LP then seeks an optimal ramp metering strategy that minimizes the delay on the motorway. It is shown that an optimal and practical strategy can be derived which reduces the motorway delay by 10 per cent without significantly hurting the surrounding connectors.

Originality/value

Instead of the tedious microscopic models used by many traditional tools, the underlying CTM is parsimonious and reliable. The tools developed herein are based upon plausible traffic theory and will be accessible for a wide range of users. The LP formulation can be easily implemented and solved for optimal and practical control strategies for real-world transport networks by using existing computer software (CPLEX) within reasonable computational time. The present work will certainly contribute to the sustainable development of transport facility.

Details

Journal of Facilities Management, vol. 12 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 28 August 2020

Qingying Wang, Rongjun Cheng and Hongxia Ge

The purpose of this paper is to explore how curved road and lane-changing rates affect the stability of traffic flow.

191

Abstract

Purpose

The purpose of this paper is to explore how curved road and lane-changing rates affect the stability of traffic flow.

Design/methodology/approach

An extended two-lane lattice hydrodynamic model on a curved road accounting for the empirical lane-changing rate is presented. The linear analysis of the new model is discussed, the stability condition and the neutral stability condition are obtained. Also, the mKdV equation and its solution are proposed through nonlinear analysis, which discusses the stability of the extended model in the unstable region. Furthermore, the results of theoretical analysis are verified by numerical simulation.

Findings

The empirical lane-changing rate on a curved road is an important factor, which can alleviate traffic congestion.

Research limitations/implications

This paper does not take into account the factors such as slope, the drivers’ characters and so on in the actual traffic, which will have more or less influence on the stability of traffic flow, so there is still a certain gap with the real traffic environment.

Originality/value

The curved road and empirical lane-changing rate are researched simultaneously in a two-lane lattice hydrodynamic models in this paper. The improved model can better reflect the actual traffic, which can also provide a theoretical reference for the actual traffic governance.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

Abstract

Details

Handbook of Transport Modelling
Type: Book
ISBN: 978-0-08-045376-7

1 – 10 of 268