Search results

1 – 6 of 6
Article
Publication date: 13 November 2018

Zi Guo, Fenghong Chu, Jinyu Fan, Ze Zhang, Zhenglan Bian, Gaofang Li and Xiaojun Song

The purpose of this paper is to propose and optimize plastic optical fiber (POF) probe with macro-bending biconical tapered structure for the relative humidity (RH) sensing.

Abstract

Purpose

The purpose of this paper is to propose and optimize plastic optical fiber (POF) probe with macro-bending biconical tapered structure for the relative humidity (RH) sensing.

Design/methodology/approach

In this study, the principle is the evanescent wave power modulated by the ambient humidity. The probe is fabricated by using fused biconical taper and heat-setting method and then coated with a fluorescent moisture-sensitive film.

Findings

The probe’s sensing performance can be optimized by changing the probe’s curvature radius, biconical tapered transition length and taper waist diameter. The result shows that the sensitivity of the probe is up to 1.60 and 3.40 mV/ per cent, respectively, at low humidity (10-45 per cent) and high humidity (45-90 per cent). Also, this probe has good linearity, repeatability, photostability and long-term stability.

Practical implications

The proposed probe can improve the sensitivity and linearity of RH sensing without complex devices, which is necessary for mass production, remote measurement and convenient operation.

Originality/value

POF probe with macro-bending biconical tapered structure is investigated in this paper, which is proved to be effective in improving the sensitivity and linearity.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 February 2022

Miao-Tzu Lin

It is important to monitor wrist four direction movements (flexion, extension, adduction and abduction) for hand healthcare, wrist rehabilitation and upper limb exercise, and so…

175

Abstract

Purpose

It is important to monitor wrist four direction movements (flexion, extension, adduction and abduction) for hand healthcare, wrist rehabilitation and upper limb exercise, and so on. The purpose of this study is to develop a quadri-directional optical bending sensor that integrated wearable device technology in a smart glove to detect wrist four direction movements.

Design/methodology/approach

The quadri-directional optical bending sensor was designed with a microcontroller board, a Bluetooth wireless module, a side-emitting polymeric optical fibre (POF), an infrared light emitting diode and four phototransistors. A linear equation was deduced to calculate bending angle from detecting sensor value of Arduino microcontroller. The bending angle values could be seen by the smartphone screen, so the system has a good human–machine interface function.

Findings

The light emission by macro-bending of the side-emitting POFs that the transmittance of the outer side is greater than the inner. The bending POFs lateral emission phenomenon integrated with phototransistors on the edge is suitable for the development of bending sensors.

Originality/value

This study is to develop a novel quadri-directional optical bending sensor to replace two bi-direction sensors or four uni-direction sensors for wrist four direction movements monitoring.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 February 2021

Miao-Tzu Lin

The purpose of this article is to develop a smart illuminated polymeric optical fibre (POF) chameleonic garment, using a wearable device technology for camouflage or safety…

Abstract

Purpose

The purpose of this article is to develop a smart illuminated polymeric optical fibre (POF) chameleonic garment, using a wearable device technology for camouflage or safety warnings based on user needs.

Design/methodology/approach

This study integrates the theory of the optical foundation, control system, wireless communication, program development and apparel design into a chameleonic garment, displaying some vests, bags and shoes.

Findings

After selecting a pixel in the photo taken by the smart phone, the four modes of the application developed in this study are used to change the POF colour of the garment.

Originality/value

This study develops four modes of smart phone application; picked mode: picks a pixel colour on a smart phone canvas, contrastive mode: transfers to contrastive colour of the picked pixel, customized mode – gives input colour number manual and random mode – it based on a system random number. When users have different functional requirements, the four modes provide various choices.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 January 2013

Jiang Qi

The purpose of this paper is to compare the sensing characteristics of uniform fiber Bragg grating (FBG) and tilted fiber Bragg grating (TFBG) by presenting a detailed research…

Abstract

Purpose

The purpose of this paper is to compare the sensing characteristics of uniform fiber Bragg grating (FBG) and tilted fiber Bragg grating (TFBG) by presenting a detailed research review. Temperature, axial strain, bending, vibration and refractive index measurands of FBG and TFBG sensor are presented and some significant differences are found.

Design/methodology/approach

Theoretical analysis and practical application in engineering are investigated and compared from other authors' research papers and self analysis. Spectra behavior of both FBG and TFBG are discussed.

Findings

There are found to be significant differences in temperature, axial strain, bending, vibration and refractive index sensing characteristics of FBG and TFBG.

Originality/value

The paper's analysis is comprehensive and clear and provides readers with the sensing characteristics of FBG and TFBG in detail.

Article
Publication date: 26 June 2021

Jianxing Gu, Chen Yu, ZhenZe Yang, Peng Xue, Ning Jing and Saimei Yan

This study aims to optimize the structure of gold-sputtered U-shaped plastic fiber sensors.

Abstract

Purpose

This study aims to optimize the structure of gold-sputtered U-shaped plastic fiber sensors.

Design/methodology/approach

A group of U-shaped Au-sputtered plastic optical fiber sensing probes with polishing angles of 45°, 90° and 135° is prepared.

Findings

The experimental results show that the spectral response and sensitivity of the sensor at 45°polishing angle is twice that of the sensor at 90°.

Research limitations/implications

Due to the limitations of laboratory temperature and equipment, the overall effect has not reached the ideal, but the expected effect has been obvious. Experiments also optimize the sensor.

Practical implications

Optical fiber sensing has always been an indispensable part of various fields.

Social implications

Sensor optimization is of great help to the progress of technology and the development of science and technology.

Originality/value

The authors have no conflicts of interest to disclose.

Article
Publication date: 11 June 2019

Ning Jing

This paper aims to propose a liquid level sensor with a multi-S-bend plastic optical fiber.

Abstract

Purpose

This paper aims to propose a liquid level sensor with a multi-S-bend plastic optical fiber.

Design/methodology/approach

The principle of liquid sensing used is based on the leakage of higher modes out of the fiber and repeated regeneration in the following bend sections. Therefore, a propagation loss was introduced in every bend section of the fiber with the loss depending on the refractive index of the environment.

Findings

Therefore, a continue shift in the liquid level can be detected by observing changes in the propagation loss of the fiber. The sensor features compactness and a flexible resolution.

Originality/value

Compared with the exited ones, the sensor has capability of continue liquid measurement and a greater measurement range.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 6 of 6