Search results

11 – 20 of over 27000
Article
Publication date: 5 January 2015

M.P. Jenarthanan and R. Jeyapaul

The purpose of this paper is to analyse and optimise the machinability behaviour of Carbon Fibre Reinforced Polymer (CFRP) composites with multiple performance characteristics…

Abstract

Purpose

The purpose of this paper is to analyse and optimise the machinability behaviour of Carbon Fibre Reinforced Polymer (CFRP) composites with multiple performance characteristics using the Taguchi method with fuzzy logic.

Design/methodology/approach

A multi-response performance index (MRPI) was used for optimisation. The machining parameters, viz., tool geometry (helix angle of the endmill cutter), spindle speed, feed rate and depth of cut, were optimised with consideration of multiple performance characteristics, viz., machining force and material removal rate.

Findings

The results from confirmation runs indicated that the determined optimal combination of machining parameters improved the performance of the machining process.

Originality/value

The machinability behaviour of CFRP composites during milling of CFRP composites using Taguchi method with fuzzy logic has not been previously analysed.

Details

Pigment & Resin Technology, vol. 44 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 2006

Vijay Kumar Meena and Nagahanumaiah

The purpose of this paper is to optimise the electro‐discharge machining (EDM) parameters and investigate feasibility of using direct metal laser sintering (DMLS) parts as EDM…

1513

Abstract

Purpose

The purpose of this paper is to optimise the electro‐discharge machining (EDM) parameters and investigate feasibility of using direct metal laser sintering (DMLS) parts as EDM electrodes.

Design/methodology/approach

In this paper the effects of discharge current, pulse‐on‐time, flushing pressure are optimized for minimum tool wear rate (TWR), maximum metal removal rate (MRR) and minimum surface roughness (Ra). Taguchi‐based L9 orthogonal array has been used for performing experiments on EDM machining of EN 24 steel using DMLS electrodes. The grey relational analysis combined with ANOVA techniques have been employed to determine the optimal level as well as their significance.

Findings

Experimental results have shown that the performance characteristics of the EDM process (TWR, MRR and surface roughness) using DMLS electrode can be quantified and controlled effectively by grey relational approach presented in the study. Current is found to be the most affective parameter in EDM machining using DMLS electrode. Excessive DMLS tool (electrode) wear was also reported, which limits the use of DMLS tool for EDM machining and it has been found out that porosity (which was about 20 per cent) was one of the primary cause.

Research limitations/implications

This paper was focused on understanding the effects of important EDM parameters on three performance characteristics (TWR, MRR and surface roughness). While this study identifies that DMLS electrode wear rate is high and porosity could be one of the main cause, presently it does not cover the investigations on reducing the porosity level and its implications.

Practical implications

The DMLS material had shown huge potential to be used as EDM electrode. The current investigation established a structured experimental approach to understand the effects of EDM parameters on multi response characteristics. The results derived from this study helps to focus future research on two aspects including enriching the copper content and reducing the porosity level, thereby the benefits of lead time reduction in EDM electrode making could be realized.

Originality/value

The previous research attempts were not focussed on optimising the EDM machining process using rapid tooling electrodes. With the best of author's knowledge none of the researchers have reported these aspects especially for DMLS electrodes. Application of grey relational analysis for performance evaluation of rapid tooling‐based EDM electrodes (DMLS electrodes) appear to be completely new.

Details

Rapid Prototyping Journal, vol. 12 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2017

Dan Zhao, Yunbo Bi and Yinglin Ke

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose…

Abstract

Purpose

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality.

Design/methodology/approach

A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system.

Findings

A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors.

Practical implications

This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy.

Originality/value

This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 September 2023

Anwar Zorig, Ahmed Belkheiri, Bachir Bendjedia, Katia Kouzi and Mohammed Belkheiri

The great value of offline identification of machine parameters is when the machine manufacturer does not provide its parameters. Most machine control strategies require parameter

Abstract

Purpose

The great value of offline identification of machine parameters is when the machine manufacturer does not provide its parameters. Most machine control strategies require parameter values, and some circumstances in the industrial sector only require offline identification. This paper aims to present a new offline method for estimating induction motor parameters based on least squares and a salp swarm algorithm (SSA).

Design/methodology/approach

The central concept is to use the classic least squares (LS) method to acquire the majority of induction machine (IM) constant parameters, followed by the SSA method to obtain all parameters and minimize errors.

Findings

The obtained results showed that the LS method gives good results in simulation based on the assumption that the measurements are noise-free. However, unlike in simulations, the LS method is unable to accurately identify the machine’s parameters during the experimental test. On the contrary, the SSA method proves higher efficiency and more precision for IM parameter estimation in both simulations and experimental tests.

Originality/value

After performing a primary identification using the technique of least squares, the initial intention of this study was to apply the SSA for the purpose of identifying all of the machine’s parameters and minimizing errors. These two approaches use the same measurement from a simple running test of an IM, and they offer a quick processing time. Therefore, this combined offline strategy provides a reliable model based on the identified parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 July 2022

Meltem Altin Karataş

Inconel 718 (IN718) is a high-performance nickel-based superalloy with high oxidation-corrosion-temperature resistance, high strength (tensile, fatigue, creep and rupture)…

185

Abstract

Purpose

Inconel 718 (IN718) is a high-performance nickel-based superalloy with high oxidation-corrosion-temperature resistance, high strength (tensile, fatigue, creep and rupture), durability, toughness, hardness and dimensional stability, which is difficult to machine with traditional fabrication methods. To overcome these difficulties, wire electrical discharge machining (WEDM), one of the modern manufacturing methods, is used.

Design/methodology/approach

Main performance criteria in WEDM; material removal rate (MRR), cutting speed, surface roughness, cutting width (kerf) and wire wear rate. In this study, the effect of processing parameters on kerf and MRR because of processing IN718 in WEDM was investigated. Machining parameters, voltage, wire feed rate and dielectric fluid pressure were determined. Deionized water was used as a dielectric fluid and 0.3 mm brass wire was used as wire in the experiments. Gray Relational Analysis (GRA), which is one of the multi-criteria decision-making methods, has been applied for the optimization of the machining parameters in the cutting process with the WEDM. Analysis of variance (ANOVA) was used to determine the effect percentages of the cut-off parameters.

Findings

The parameter with the highest effect was determined as tension with a rate of 76.95% for kerf and 91.21% for MRR.

Originality/value

The novel approach uses Taguchi-based GRA optimization as a result of cutting IN718 with WEDM, reducing cost and time consumption.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2015

Jenarthanan Poornachary Mugundhu, Suresh Subramanian and Ajay Subramanian

Glass fibre reinforced plastics (GFRP) contain two phases of materials with drastically distinguished mechanical and thermal properties, which brings in complicated interactions…

Abstract

Purpose

Glass fibre reinforced plastics (GFRP) contain two phases of materials with drastically distinguished mechanical and thermal properties, which brings in complicated interactions between the matrix and the reinforcement during machining. Surface quality and dimensional precision will greatly affect parts during their useful life especially in cases where the components will be in contact with other elements or materials during their useful life. The purpose of this paper is to discuss the application of the Taguchi method with fuzzy logic to optimise the machining parameters for machining of GFRP composites with multiple characteristics.

Design/methodology/approach

The machining tests were performed on a CNC milling machine using solid carbide (K10) End mill cutting tool with three different helix angles. Experiments were planned using Taguchi’s orthogonal array with the cutting conditions prefixed.

Findings

The machining parameters, namely, helix angle of the end mill cutter, spindle speed, feed rate, depth of cut, and work piece fibre orientation (specially applied to the GFRP composites) were optimised with considerations of multiple response characteristics, including machining force, material removal rate, and delamination. The results from confirmation runs indicated that the determined optimal combination of machining parameters improved the performance of the machining process.

Originality/value

Multi-response optimisation of machinability behaviour of GFRP composites using fuzzy logic has not been attempted previously.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 June 2020

Srinath Sridhar and Rajeswari Sellamani

The purpose of this paper is to find out the optimal level as well as the influence of end mill cutter geometrical and machining parameters while machining metal matrix composite…

Abstract

Purpose

The purpose of this paper is to find out the optimal level as well as the influence of end mill cutter geometrical and machining parameters while machining metal matrix composite. End milling is carried out on Al 356/SiC metal matrix composites (MMC) using high-speed steel (HSS) end mill cutter. The optimum level of input parameters such as helix angle, nose radius, rake angle, cutting speed, feed rate and depth of cut are calculated for minimum temperature rise.

Design/methodology/approach

L27 Taguchi orthogonal design, signal-to-noise (S/N) ratio, are applied for conducting experiments, and to find the optimal level of input parameters for minimum temperature rise, respectively. Analysis of variance (ANOVA) is used to analyze the significance of input parameters on temperature rise.

Findings

It is found that the optimal combination of helix angle 400, nose radius 0.8 mm, rake angle 80, cutting speed 30 m/min, feed rate 0.04 mm/rev and depth of cut 0.5 mm have generated minimum temperature rise. From ANOVA analysis, it is found that rake angle influence is more on output performance followed by cutting speed and nose radius compared with other machining and geometrical parameters.

Originality/value

The influence of geometrical parameters such as helix angle, nose radius and rake angle of end mill cutter on temperature rise while machining MMC has not been explored previously.

Details

World Journal of Engineering, vol. 17 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 November 2020

S. Madhu and M. Balasubramanian

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish…

Abstract

Purpose

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish with high-level precision and minimization of waste. Among the various advanced machining processes, abrasive jet machining (AJM) is one of the non-traditional machining techniques used for various applications such as polishing, deburring and hole making. Hence, an overview of the investigations done on carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GRFP) composites becomes important.

Design/methodology/approach

Discussion on various approaches to AJM, the effect of process parameters on the glass fiber and carbon fiber polymeric composites are presented. Kerf characteristics, surface roughness and various nozzle design were also discussed.

Findings

It was observed that abrasive jet pressure, stand-off distance, traverse rate, abrasive size, nozzle diameter, angle of attack are the significant process parameters which affect the machining time, material removal rate, top kerf, bottom kerf and kerf angle. When the particle size is maximum, the increased kinetic energy of the particle improves the penetration depth on the CFRP surface. As the abrasive jet pressure is increased, the cutting process is enabled without severe jet deflection which in turn minimizes the waviness pattern, resulting in a decrease of the surface roughness.

Research limitations/implications

The review is limited to glass fiber and carbon fiber polymeric composites.

Practical implications

In many applications, the use of composite has gained wide acceptance. Hence, machining of the composite need for the study also has gained wide acceptance.

Social implications

The usage of composites reduces the usage of very costly materials of high density. The cost of the material also comes down.

Originality/value

This paper is a comprehensive review of machining composite with abrasive jet. The paper covers in detail about machining of only GFRP and CFRP composites with various nozzle designs, unlike many studies which has focused widely on general AJM of various materials.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

11 – 20 of over 27000