Search results

1 – 10 of over 28000
To view the access options for this content please click here
Book part

Brett Lantz

Machine learning and artificial intelligence (AI) have arisen as the availability of larger data sources, statistical methods, and computing power have rapidly and…

Abstract

Machine learning and artificial intelligence (AI) have arisen as the availability of larger data sources, statistical methods, and computing power have rapidly and simultaneously evolved. The transformation is leading to a revolution that will affect virtually every industry. Businesses that are slow to adopt modern data practices are likely to be left behind with little chance to catch up.

The purpose of this chapter is to provide a brief overview of machine learning and AI in the business setting. In addition to providing historical context, the chapter also provides justification for AI investment, even in industries in which data is not the core business function. The means by which computers learn is de-mystified and various algorithms and evaluation methods are presented. Lastly, the chapter considers various ethical and practical consequences of machine learning algorithms after implementation.

Details

The Machine Age of Customer Insight
Type: Book
ISBN: 978-1-83909-697-6

Keywords

Content available
Article

Ning Yan and Oliver Tat-Sheung Au

The purpose of this paper is to make a correlation analysis between students’ online learning behavior features and course grade, and to attempt to build some effective…

Abstract

Purpose

The purpose of this paper is to make a correlation analysis between students’ online learning behavior features and course grade, and to attempt to build some effective prediction model based on limited data.

Design/methodology/approach

The prediction label in this paper is the course grade of students, and the eigenvalues available are student age, student gender, connection time, hits count and days of access. The machine learning model used in this paper is the classical three-layer feedforward neural networks, and the scaled conjugate gradient algorithm is adopted. Pearson correlation analysis method is used to find the relationships between course grade and the student eigenvalues.

Findings

Days of access has the highest correlation with course grade, followed by hits count, and connection time is less relevant to students’ course grade. Student age and gender have the lowest correlation with course grade. Binary classification models have much higher prediction accuracy than multi-class classification models. Data normalization and data discretization can effectively improve the prediction accuracy of machine learning models, such as ANN model in this paper.

Originality/value

This paper may help teachers to find some clue to identify students with learning difficulties in advance and give timely help through the online learning behavior data. It shows that acceptable prediction models based on machine learning can be built using a small and limited data set. However, introducing external data into machine learning models to improve its prediction accuracy is still a valuable and hard issue.

Details

Asian Association of Open Universities Journal, vol. 14 no. 2
Type: Research Article
ISSN: 2414-6994

Keywords

Content available
Article

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects…

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2210-8327

Keywords

To view the access options for this content please click here
Article

Samira Khodabandehlou and Mahmoud Zivari Rahman

This paper aims to provide a predictive framework of customer churn through six stages for accurate prediction and preventing customer churn in the field of business.

Abstract

Purpose

This paper aims to provide a predictive framework of customer churn through six stages for accurate prediction and preventing customer churn in the field of business.

Design/methodology/approach

The six stages are as follows: first, collection of customer behavioral data and preparation of the data; second, the formation of derived variables and selection of influential variables, using a method of discriminant analysis; third, selection of training and testing data and reviewing their proportion; fourth, the development of prediction models using simple, bagging and boosting versions of supervised machine learning; fifth, comparison of churn prediction models based on different versions of machine-learning methods and selected variables; and sixth, providing appropriate strategies based on the proposed model.

Findings

According to the results, five variables, the number of items, reception of returned items, the discount, the distribution time and the prize beside the recency, frequency and monetary (RFM) variables (RFMITSDP), were chosen as the best predictor variables. The proposed model with accuracy of 97.92 per cent, in comparison to RFM, had much better performance in churn prediction and among the supervised machine learning methods, artificial neural network (ANN) had the highest accuracy, and decision trees (DT) was the least accurate one. The results show the substantially superiority of boosting versions in prediction compared with simple and bagging models.

Research limitations/implications

The period of the available data was limited to two years. The research data were limited to only one grocery store whereby it may not be applicable to other industries; therefore, generalizing the results to other business centers should be used with caution.

Practical implications

Business owners must try to enforce a clear rule to provide a prize for a certain number of purchased items. Of course, the prize can be something other than the purchased item. Business owners must accept the items returned by the customers for any reasons, and the conditions for accepting returned items and the deadline for accepting the returned items must be clearly communicated to the customers. Store owners must consider a discount for a certain amount of purchase from the store. They have to use an exponential rule to increase the discount when the amount of purchase is increased to encourage customers for more purchase. The managers of large stores must try to quickly deliver the ordered items, and they should use equipped and new transporting vehicles and skilled and friendly workforce for delivering the items. It is recommended that the types of services, the rules for prizes, the discount, the rules for accepting the returned items and the method of distributing the items must be prepared and shown in the store for all the customers to see. The special services and reward rules of the store must be communicated to the customers using new media such as social networks. To predict the customer behaviors based on the data, the future researchers should use the boosting method because it increases efficiency and accuracy of prediction. It is recommended that for predicting the customer behaviors, particularly their churning status, the ANN method be used. To extract and select the important and effective variables influencing customer behaviors, the discriminant analysis method can be used which is a very accurate and powerful method for predicting the classes of the customers.

Originality/value

The current study tries to fill this gap by considering five basic and important variables besides RFM in stores, i.e. prize, discount, accepting returns, delay in distribution and the number of items, so that the business owners can understand the role services such as prizes, discount, distribution and accepting returns play in retraining the customers and preventing them from churning. Another innovation of the current study is the comparison of machine-learning methods with their boosting and bagging versions, especially considering the fact that previous studies do not consider the bagging method. The other reason for the study is the conflicting results regarding the superiority of machine-learning methods in a more accurate prediction of customer behaviors, including churning. For example, some studies introduce ANN (Huang et al., 2010; Hung and Wang, 2004; Keramati et al., 2014; Runge et al., 2014), some introduce support vector machine ( Guo-en and Wei-dong, 2008; Vafeiadis et al., 2015; Yu et al., 2011) and some introduce DT (Freund and Schapire, 1996; Qureshi et al., 2013; Umayaparvathi and Iyakutti, 2012) as the best predictor, confusing the users of the results of these studies regarding the best prediction method. The current study identifies the best prediction method specifically in the field of store businesses for researchers and the owners. Moreover, another innovation of the current study is using discriminant analysis for selecting and filtering variables which are important and effective in predicting churners and non-churners, which is not used in previous studies. Therefore, the current study is unique considering the used variables, the method of comparing their accuracy and the method of selecting effective variables.

Details

Journal of Systems and Information Technology, vol. 19 no. 1/2
Type: Research Article
ISSN: 1328-7265

Keywords

Content available
Article

Agostino Valier

In the literature there are numerous tests that compare the accuracy of automated valuation models (AVMs). These models first train themselves with price data and property…

Abstract

Purpose

In the literature there are numerous tests that compare the accuracy of automated valuation models (AVMs). These models first train themselves with price data and property characteristics, then they are tested by measuring their ability to predict prices. Most of them compare the effectiveness of traditional econometric models against the use of machine learning algorithms. Although the latter seem to offer better performance, there is not yet a complete survey of the literature to confirm the hypothesis.

Design/methodology/approach

All tests comparing regression analysis and AVMs machine learning on the same data set have been identified. The scores obtained in terms of accuracy were then compared with each other.

Findings

Machine learning models are more accurate than traditional regression analysis in their ability to predict value. Nevertheless, many authors point out as their limit their black box nature and their poor inferential abilities.

Practical implications

AVMs machine learning offers a huge advantage for all real estate operators who know and can use them. Their use in public policy or litigation can be critical.

Originality/value

According to the author, this is the first systematic review that collects all the articles produced on the subject done comparing the results obtained.

Details

Journal of Property Investment & Finance, vol. 38 no. 3
Type: Research Article
ISSN: 1463-578X

Keywords

To view the access options for this content please click here
Book part

D. K. Malhotra, Kunal Malhotra and Rashmi Malhotra

Traditionally, loan officers use different credit scoring models to complement judgmental methods to classify consumer loan applications. This study explores the use of…

Abstract

Traditionally, loan officers use different credit scoring models to complement judgmental methods to classify consumer loan applications. This study explores the use of decision trees, AdaBoost, and support vector machines (SVMs) to identify potential bad loans. Our results show that AdaBoost does provide an improvement over simple decision trees as well as SVM models in predicting good credit clients and bad credit clients. To cross-validate our results, we use k-fold classification methodology.

To view the access options for this content please click here
Article

Zulkifli Halim, Shuhaida Mohamed Shuhidan and Zuraidah Mohd Sanusi

In the previous study of financial distress prediction, deep learning techniques performed better than traditional techniques over time-series data. This study…

Abstract

Purpose

In the previous study of financial distress prediction, deep learning techniques performed better than traditional techniques over time-series data. This study investigates the performance of deep learning models: recurrent neural network, long short-term memory and gated recurrent unit for the financial distress prediction among the Malaysian public listed corporation over the time-series data. This study also compares the performance of logistic regression, support vector machine, neural network, decision tree and the deep learning models on single-year data.

Design/methodology/approach

The data used are the financial data of public listed companies that been classified as PN17 status (distress) and non-PN17 (not distress) in Malaysia. This study was conducted using machine learning library of Python programming language.

Findings

The findings indicate that all deep learning models used for this study achieved 90% accuracy and above with long short-term memory (LSTM) and gated recurrent unit (GRU) getting 93% accuracy. In addition, deep learning models consistently have good performance compared to the other models over single-year data. The results show LSTM and GRU getting 90% and recurrent neural network (RNN) 88% accuracy. The results also show that LSTM and GRU get better precision and recall compared to RNN. The findings of this study show that the deep learning approach will lead to better performance in financial distress prediction studies. To be added, time-series data should be highlighted in any financial distress prediction studies since it has a big impact on credit risk assessment.

Research limitations/implications

The first limitation of this study is the hyperparameter tuning only applied for deep learning models. Secondly, the time-series data are only used for deep learning models since the other models optimally fit on single-year data.

Practical implications

This study proposes recommendations that deep learning is a new approach that will lead to better performance in financial distress prediction studies. Besides that, time-series data should be highlighted in any financial distress prediction studies since the data have a big impact on the assessment of credit risk.

Originality/value

To the best of authors' knowledge, this article is the first study that uses the gated recurrent unit in financial distress prediction studies based on time-series data for Malaysian public listed companies. The findings of this study can help financial institutions/investors to find a better and accurate approach for credit risk assessment.

Details

Business Process Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-7154

Keywords

To view the access options for this content please click here
Article

Önder Özgür and Uğur Akkoç

The main purpose of this study is to forecast inflation rates in the case of the Turkish economy with shrinkage methods of machine learning algorithms.

Abstract

Purpose

The main purpose of this study is to forecast inflation rates in the case of the Turkish economy with shrinkage methods of machine learning algorithms.

Design/methodology/approach

This paper compares the predictive ability of a set of machine learning techniques (ridge, lasso, ada lasso and elastic net) and a group of benchmark specifications (autoregressive integrated moving average (ARIMA) and multivariate vector autoregression (VAR) models) on the extensive dataset.

Findings

Results suggest that shrinkage methods perform better for variable selection. It is also seen that lasso and elastic net algorithms outperform conventional econometric methods in the case of Turkish inflation. These algorithms choose the energy production variables, construction-sector measure, reel effective exchange rate and money market indicators as the most relevant variables for inflation forecasting.

Originality/value

Turkish economy that is a typical emerging country has experienced two digit and high volatile inflation regime starting with the year 2017. This study contributes to the literature by introducing the machine learning techniques to forecast inflation in the Turkish economy. The study also compares the relative performance of machine learning techniques and different conventional methods to predict inflation in the Turkish economy and provide the empirical methodology offering the best predictive performance among their counterparts.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Content available
Article

R. Shashikant and P. Chetankumar

Cardiac arrest is a severe heart anomaly that results in billions of annual casualties. Smoking is a specific hazard factor for cardiovascular pathology, including…

Abstract

Cardiac arrest is a severe heart anomaly that results in billions of annual casualties. Smoking is a specific hazard factor for cardiovascular pathology, including coronary heart disease, but data on smoking and heart death not earlier reviewed. The Heart Rate Variability (HRV) parameters used to predict cardiac arrest in smokers using machine learning technique in this paper. Machine learning is a method of computing experience based on automatic learning and enhances performances to increase prognosis. This study intends to compare the performance of logistical regression, decision tree, and random forest model to predict cardiac arrest in smokers. In this paper, a machine learning technique implemented on the dataset received from the data science research group MITU Skillogies Pune, India. To know the patient has a chance of cardiac arrest or not, developed three predictive models as 19 input feature of HRV indices and two output classes. These model evaluated based on their accuracy, precision, sensitivity, specificity, F1 score, and Area under the curve (AUC). The model of logistic regression has achieved an accuracy of 88.50%, precision of 83.11%, the sensitivity of 91.79%, the specificity of 86.03%, F1 score of 0.87, and AUC of 0.88. The decision tree model has arrived with an accuracy of 92.59%, precision of 97.29%, the sensitivity of 90.11%, the specificity of 97.38%, F1 score of 0.93, and AUC of 0.94. The model of the random forest has achieved an accuracy of 93.61%, precision of 94.59%, the sensitivity of 92.11%, the specificity of 95.03%, F1 score of 0.93 and AUC of 0.95. The random forest model achieved the best accuracy classification, followed by the decision tree, and logistic regression shows the lowest classification accuracy.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

To view the access options for this content please click here
Article

Congying Guan, Shengfeng Qin and Yang Long

The big challenge in apparel recommendation system research is not the exploration of machine learning technologies in fashion, but to really understand clothes, fashion…

Abstract

Purpose

The big challenge in apparel recommendation system research is not the exploration of machine learning technologies in fashion, but to really understand clothes, fashion and people, and know what to learn. The purpose of this paper is to explore an advanced apparel style learning and recommendation system that can recognise deep design-associated features of clothes and learn the connotative meanings conveyed by these features relating to style and the body so that it can make recommendations as a skilled human expert.

Design/methodology/approach

This study first proposes a type of new clothes style training data. Second, it designs three intelligent apparel-learning models based on newly proposed training data including ATTRIBUTE, MEANING and the raw image data, and compares the models’ performances in order to identify the best learning model. For deep learning, two models are introduced to train the prediction model, one is a convolutional neural network joint with the baseline classifier support vector machine and the other is with a newly proposed classifier later kernel fusion.

Findings

The results show that the most accurate model (with average prediction rate of 88.1 per cent) is the third model that is designed with two steps, one is to predict apparel ATTRIBUTEs through the apparel images, and the other is to further predict apparel MEANINGs based on predicted ATTRIBUTEs. The results indicate that adding the proposed ATTRIBUTE data that captures the deep features of clothes design does improve the model performances (e.g. from 73.5 per cent, Model B to 86 per cent, Model C), and the new concept of apparel recommendation based on style meanings is technically applicable.

Originality/value

The apparel data and the design of three training models are originally introduced in this study. The proposed methodology can evaluate the pros and cons of different clothes feature extraction approaches through either images or design attributes and balance different machine learning technologies between the latest CNN and traditional SVM.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 28000