Search results

1 – 10 of 119
Article
Publication date: 13 February 2020

Ho Pham Huy Anh and Cao Van Kien

The purpose of this paper is to propose an optimal energy management (OEM) method using intelligent optimization techniques applied to implement an optimally hybrid heat and power…

Abstract

Purpose

The purpose of this paper is to propose an optimal energy management (OEM) method using intelligent optimization techniques applied to implement an optimally hybrid heat and power isolated microgrid. The microgrid investigated combines renewable and conventional power generation.

Design/methodology/approach

Five bio-inspired optimization methods include an advanced proposed multi-objective particle swarm optimization (MOPSO) approach which is comparatively applied for OEM of the implemented microgrid with other bio-inspired optimization approaches via their comparative simulation results.

Findings

Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization methods. Moreover, the proposed MOPSO is successfully applied to perform 24-h OEM microgrid. The simulation results also display the merits of the real time optimization along with the arbitrary of users’ selection as to satisfy their power requirement.

Originality/value

This paper focuses on the OEM of a designed microgrid using a newly proposed modified MOPSO algorithm. Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization approaches.

Article
Publication date: 23 March 2012

Byoung‐Jun Park, Jeoung‐Nae Choi, Wook‐Dong Kim and Sung‐Kwun Oh

The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation (IG‐FRBFNN) and their optimization realized by…

Abstract

Purpose

The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation (IG‐FRBFNN) and their optimization realized by means of the Multiobjective Particle Swarm Optimization (MOPSO).

Design/methodology/approach

In fuzzy modeling, complexity, interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. Since the performance of the IG‐RBFNN model is directly affected by some parameters, such as the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials in the consequent parts of the rules, the authors carry out both structural as well as parametric optimization of the network. A multi‐objective Particle Swarm Optimization using Crowding Distance (MOPSO‐CD) as well as O/WLS learning‐based optimization are exploited to carry out the structural and parametric optimization of the model, respectively, while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.

Findings

The performance of the proposed model is illustrated with the aid of three examples. The proposed optimization method leads to an accurate and highly interpretable fuzzy model.

Originality/value

A MOPSO‐CD as well as O/WLS learning‐based optimization are exploited, respectively, to carry out the structural and parametric optimization of the model. As a result, the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.

Article
Publication date: 4 October 2011

Nikhil Padhye and Kalyanmoy Deb

The goal of this study is to carry out multi‐objective optimization by considering minimization of surface roughness (Ra) and build time (T) in selective laser sintering (SLS…

1432

Abstract

Purpose

The goal of this study is to carry out multi‐objective optimization by considering minimization of surface roughness (Ra) and build time (T) in selective laser sintering (SLS) process, which are functions of “build orientation”. Evolutionary algorithms are applied for this purpose. The performance comparison of the optimizers is done based on statistical measures. In order to find truly optimal solutions, local search is proposed. An important task of decision making, i.e. the selection of one solution in the presence of multiple trade‐off solutions, is also addressed. Analysis of optimal solutions is done to gain insight into the problem behavior.

Design/methodology/approach

The minimization of Ra and T is done using two popular optimizers – multi‐objective genetic algorithm (non‐dominated sorting genetic algorithm (NSGA‐II)) and multi‐objective particle swarm optimizers (MOPSO). Standard measures from evolutionary computation – “hypervolume measure” and “attainment surface approximator” have been borrowed to compare the optimizers. Decision‐making schemes are proposed in this paper based on decision theory.

Findings

The objects are categorized into groups, which bear similarity in optimal solutions. NSGA‐II outperforms MOPSO. The similarity of spread and convergence patterns of NSGA‐II and MOPSO ensures that obtained solutions are (or are close to) Pareto‐optimal set. This is validated by local search. Based on the analysis of obtained solutions, general trends for optimal orientations (depending on the geometrical features) are found.

Research limitations/implications

A novel and systematic way to address multi‐objective optimization decision‐making post‐optimal analysis is shown. Simulations utilize experimentally derived models for roughness and build time. A further step could be the experimental verification of findings provided in this study.

Practical implications

This study provides a thorough methodology to find optimal build orientations in SLS process. A route to decipher valuable problem information through post‐optimal analysis is shown. The principles adopted in this study are general and can be extended to other rapid prototyping (RP) processes and expected to find wide applicability.

Originality/value

This paper is a distinct departure from past studies in RP and demonstrates the concepts of multi‐objective optimization, decision‐making and related issues.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 October 2012

B. Latha Shankar, S. Basavarajappa and Rajeshwar S. Kadadevaramath

The paper aims at the bi‐objective optimization of a two‐echelon distribution network model for facility location and capacity allocation where in a set of customer locations with…

Abstract

Purpose

The paper aims at the bi‐objective optimization of a two‐echelon distribution network model for facility location and capacity allocation where in a set of customer locations with demands and a set of candidate facility locations will be known in advance. The problem is to find the locations of the facilities and the shipment pattern between the facilities and the distribution centers (DCs) to minimize the combined facility location and shipment costs subject to a requirement that maximum customer demands be met.

Design/methodology/approach

To optimize the two objectives simultaneously, the location and distribution two‐echelon network model is mathematically represented in this paper considering the associated constraints, capacity, production and shipment costs and solved using hybrid multi‐objective particle swarm optimization (MOPSO) algorithm.

Findings

This paper shows that the heuristic based hybrid MOPSO algorithm can be used as an optimizer for characterizing the Pareto optimal front by computing well‐distributed non‐dominated solutions. These aolutions represent trade‐off solutions out of which an appropriate solution can be chosen according to industrial requirement.

Originality/value

Very few applications of hybrid MOPSO are mentioned in literature in the area of supply chain management. This paper addresses one of such applications.

Details

Journal of Modelling in Management, vol. 7 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 23 April 2024

Fatemeh Ravandi, Azar Fathi Heli Abadi, Ali Heidari, Mohammad Khalilzadeh and Dragan Pamucar

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of…

Abstract

Purpose

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of ambulances pose operational and momentary challenges, necessitating an optimal policy based on the system's real-time status. While previous studies have addressed these concerns, limited attention has been given to the optimal allocation of technicians to respond to emergency situation and minimize overall system costs.

Design/methodology/approach

In this paper, a bi-objective mathematical model is proposed to maximize system coverage and enable flexible movement across bases for location, dispatch and relocation of ambulances. Ambulances relocation involves two key decisions: (1) allocating ambulances to bases after completing services and (2) deciding to change the current ambulance location among existing bases to potentially improve response times to future emergencies. The model also considers the varying capabilities of technicians for proper allocation in emergency situations.

Findings

The Augmented Epsilon-Constrained (AEC) method is employed to solve the proposed model for small-sized problem. Due to the NP-Hardness of the model, the NSGA-II and MOPSO metaheuristic algorithms are utilized to obtain efficient solutions for large-sized problems. The findings demonstrate the superiority of the MOPSO algorithm.

Practical implications

This study can be useful for emergency medical centers and healthcare companies in providing more effective responses to emergency situations by sending technicians and ambulances.

Originality/value

In this study, a two-objective mathematical model is developed for ambulance location and dispatch and solved by using the AEC method as well as the NSGA-II and MOPSO metaheuristic algorithms. The mathematical model encompasses three primary types of decision-making: (1) Allocating ambulances to bases after completing their service, (2) deciding to relocate the current ambulance among existing bases to potentially enhance response times to future emergencies and (3) considering the diverse abilities of technicians for accurate allocation to emergency situations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 July 2015

Umadevi Nagalingam, Balaji Mahadevan, Kamaraj Vijayarajan and Ananda Padmanaban Loganathan

The purpose of this paper is to propose a multi-objective particle swarm optimization (MOPSO) algorithm based design optimization of Brushless DC (BLDC) motor with a view to…

Abstract

Purpose

The purpose of this paper is to propose a multi-objective particle swarm optimization (MOPSO) algorithm based design optimization of Brushless DC (BLDC) motor with a view to mitigate cogging torque and enhance the efficiency.

Design/methodology/approach

The suitability of MOPSO algorithm is tested on a 120 W BLDC motor considering magnet axial length, stator slot opening and air gap length as the design variables. It avails the use of MagNet 7.5.1, a Finite Element Analysis tool, to account for the geometry and the non-linearity of material for assuaging an improved design framework and operates through the boundaries of generalized regression neural network (GRNN) to advocate the optimum design. The results of MOPSO are compared with Multi-Objective Genetic Algorithm and Non-dominated Sorting Genetic Algorithm-II based formulations for claiming its place in real world applications.

Findings

A MOPSO design optimization procedure has been enlivened to escalate the performance of the BLDC motor. The optimality in design has been out reached through minimizing the cogging torque, maximizing the average torque and reducing the total losses to claim an increase in the efficiency. The results have been fortified in well-distributed Pareto-optimal planes to arrive at trade-off solutions between different objectives.

Research limitations/implications

The rhetoric theory of multi objective formulations has been reinforced to provide a decisive solution with regard to the choice of the design obtained from Pareto-optimal planes.

Practical implications

The incorporation of a larger number of design variables together with an orientation to thermal and vibration analysis will still go a long way in bringing on board new dimensions to the fold of optimality in the design of BLDC motors.

Originality/value

The proposal offers a new perspective to the design of BLDC motor in the sense it be-hives the facility of a swarm based approach to optimize the parameters in order that it serves to improve its performance. The results of a 120 W motor in terms of lowering the losses, minimizing the cogging torque and maximizing the average torque emphasize the benefits of the GRNN based multi-objective formulation and establish its viability for use in practical applications.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2016

Gonggui Chen, Lilan Liu, Yanyan Guo and Shanwai Huang

For one thing, despite the fact that it is popular to research the minimization of the power losses in power systems, the optimization of single objective seems insufficient to…

Abstract

Purpose

For one thing, despite the fact that it is popular to research the minimization of the power losses in power systems, the optimization of single objective seems insufficient to fully improve the performance of power systems. Multi-objective VAR Dispatch (MVARD) generally minimizes two objectives simultaneously: power losses and voltage deviation. The purpose of this paper is to propose Multi-Objective Enhanced PSO (MOEPSO) algorithm that achieves a good performance when applied to solve MVARD problem. Thus, the new algorithm is worthwhile to be known by the public.

Design/methodology/approach

Motivated by differential evolution algorithm, cross-over operator is introduced to increase particle diversity and reinforce global searching capacity in conventional PSO. In addition to that, a constraint-handling approach considering Constrain-prior Pareto-Dominance (CPD) is presented to handle the inequality constraints on dependent variables. Constrain-prior Nondominated Sorting (CNS) and crowding distance methods are considered to maintain well-distributed Pareto optimal solutions. The method combining CPD approach, CNS technique, and cross-over operator is called the MOEPSO method.

Findings

The IEEE 30 node and IEEE 57 node on power systems have been used to examine and test the presented method. The simulation results show the MOEPSO method can achieve lower power losses, smaller voltage deviation, and better-distributed Pareto optimal solutions comparing with the Multi-Objective PSO approach.

Originality/value

The most original parts include: the presented MOEPSO algorithm, the CPD approach that is used to handle constraints on dependent variables, and the CNS method which is considered to maintain a well-distributed Pareto optimal solutions. The performance of the proposed algorithm successfully reflects the value of this paper.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 April 2020

Mehdi Darbandi, Amir Reza Ramtin and Omid Khold Sharafi

A set of routers that are connected over communication channels can from network-on-chip (NoC). High performance, scalability, modularity and the ability to parallel the structure…

Abstract

Purpose

A set of routers that are connected over communication channels can from network-on-chip (NoC). High performance, scalability, modularity and the ability to parallel the structure of the communications are some of its advantages. Because of the growing number of cores of NoC, their arrangement has got more valuable. The mapping action is done based on assigning different functional units to different nodes on the NoC, and the way it is done contains a significant effect on implementation and network power utilization. The NoC mapping issue is one of the NP-hard problems. Therefore, for achieving optimal or near-optimal answers, meta-heuristic algorithms are the perfect choices. The purpose of this paper is to design a novel procedure for mapping process cores for reducing communication delays and cost parameters. A multi-objective particle swarm optimization algorithm standing on crowding distance (MOPSO-CD) has been used for this purpose.

Design/methodology/approach

In the proposed approach, in which the two-dimensional mesh topology has been used as base construction, the mapping operation is divided into two stages as follows: allocating the tasks to suitable cores of intellectual property; and plotting the map of these cores in a specific tile on the platform of NoC.

Findings

The proposed method has dramatically improved the related problems and limitations of meta-heuristic algorithms. This algorithm performs better than the particle swarm optimization (PSO) and genetic algorithm in convergence to the Pareto, producing a proficiently divided collection of solving ways and the computational time. The results of the simulation also show that the delay parameter of the proposed method is 1.1 per cent better than the genetic algorithm and 0.5 per cent better than the PSO algorithm. Also, in the communication cost parameter, the proposed method has 2.7 per cent better action than a genetic algorithm and 0.16 per cent better action than the PSO algorithm.

Originality/value

As yet, the MOPSO-CD algorithm has not been used for solving the task mapping issue in the NoC.

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 28 October 2014

Yuzhong Chen, Yang Yu and Guolong Chen

Shortest distance query between a pair of nodes in a graph is a classical problem with a wide variety of applications. Exact methods for this problem are infeasible for…

Abstract

Purpose

Shortest distance query between a pair of nodes in a graph is a classical problem with a wide variety of applications. Exact methods for this problem are infeasible for large-scale graphs such as social networks with hundreds of millions of users and links due to their high complexity of time and space. The purpose of this paper is to propose a novel landmark selection strategy which can estimate the shortest distances in large-scale graphs and clarify the efficiency and accuracy of the proposed strategy in comparison with currently used strategies.

Design/methodology/approach

Different from existing strategies, the landmark selection problem is regarded as a binary combinational optimization problem consisting of two optimization objectives and one constraint. Further, the original binary combinational optimization problem with constraints is transformed to a proper form of optimization objectives without any additional constraints and the equivalence of solutions is proved. Finally the solution of the optimization problem is performed with a modified multi-objective particle swarm optimization (MOPSO) integrating the mutation operator and crossover operator of genetic algorithm.

Findings

Four real networks of large scale are used as data sets to carry out the experiments and the experiment results show that the proposed strategy improves both of the accuracy and time efficiency to perform shortest distance estimation in large scale graph compared to other currently used strategies.

Originality/value

This paper proposes a novel landmark selection strategy which regards the landmark selection problem as a binary combinational optimization problem. The original binary combinational optimization problem with constraints is transformed to a proper form of optimization objectives without constraints and the equivalence of these two optimization problems is proved. This novel strategy also utilizes a modified MOPSO integrating the mutation operator and crossover operator of genetic algorithm.

Details

Engineering Computations, vol. 31 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 January 2022

Leila Hashemi, Armin Mahmoodi, Milad Jasemi, Richard C. Millar and Jeremy Laliberté

In the present research, location and routing problems, as well as the supply chain, which includes manufacturers, distributor candidate sites and retailers, are explored. The…

Abstract

Purpose

In the present research, location and routing problems, as well as the supply chain, which includes manufacturers, distributor candidate sites and retailers, are explored. The goal of addressing the issue is to reduce delivery times and system costs for retailers so that routing and distributor location may be determined.

Design/methodology/approach

By adding certain unique criteria and limits, the issue becomes more realistic. Customers expect simultaneous deliveries and pickups, and retail service start times have soft and hard time windows. Transportation expenses, noncompliance with the soft time window, distributor construction, vehicle purchase or leasing, and manufacturing costs are all part of the system costs. The problem's conceptual model is developed and modeled first, and then General Algebraic Modeling System software (GAMS) and Multiple Objective Particle Swarm Optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGAII) algorithms are used to solve it in small dimensions.

Findings

According to the mathematical model's solution, the average error of the two suggested methods, in contrast to the exact answer, is less than 0.7%. In addition, the performance of algorithms in terms of deviation from the GAMS exact solution is pretty satisfactory, with a divergence of 0.4% for the biggest problem (N = 100). As a result, NSGAII is shown to be superior to MOSPSO.

Research limitations/implications

Since this paper deals with two bi-objective models, the priorities of decision-makers in selecting the best solution were not taken into account, and each of the objective functions was given an equal weight based on the weighting procedures. The model has not been compared or studied in both robust and deterministic modes. This is because, with the exception of the variable that indicates traffic mode uncertainty, all variables are deterministic, and the uncertainty character of demand in each level of the supply chain is ignored.

Practical implications

The suggested model's conclusions are useful for any group of decision-makers concerned with optimizing production patterns at any level. The employment of a diverse fleet of delivery vehicles, as well as the use of stochastic optimization techniques to define the time windows, demonstrates how successful distribution networks are in lowering operational costs.

Originality/value

According to a multi-objective model in a three-echelon supply chain, this research fills in the gaps in the link between routing and location choices in a realistic manner, taking into account the actual restrictions of a distribution network. The model may reduce the uncertainty in vehicle performance while choosing a refueling strategy or dealing with diverse traffic scenarios, bringing it closer to certainty. In addition, two modified MOPSO and NSGA-II algorithms are presented for solving the model, with the results compared to the exact GAMS approach for medium- and small-sized problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 119