Search results

1 – 10 of 12
Open Access
Article
Publication date: 25 January 2022

Nguyen Ngoc An, Huynh Song Nhut, Tran Anh Phuong, Vu Quang Huy, Nguyen Cao Hanh, Giang Thi Phuong Thao, Pham The Trinh, Pham Viet Hoa and Nguyễn An Bình

Groundwater plays a critical part in both natural and human existence. When surface water is scarce in arid climates, groundwater becomes an immensely valuable resource. Dak Lak…

Abstract

Purpose

Groundwater plays a critical part in both natural and human existence. When surface water is scarce in arid climates, groundwater becomes an immensely valuable resource. Dak Lak is an area that frequently lacks water resources for everyday living and production, and the scarcity of water resources is exacerbated during the dry season. As a result, it is critical to do study and understand about groundwater to meet the region's water demand. This study aims to extend the use of the MODFLOW model for groundwater simulation and assess the overall groundwater reserves and water demand in the highland province Dak Lak.

Design/methodology/approach

The MODFLOW model is used in this work to compute and analyze the flow, prospective reserves of groundwater from which to plan extraction and estimate groundwater variation in the future.

Findings

The application of the MODFLOW model to Dak Lak province demonstrates that, despite limited data, particularly drilling hole data for subterranean water research, the model's calculation results have demonstrated its reliability and great potential for use in other similar places. The use of the model in conjunction with other data extraction modules is a useful input for creating underground flow module maps for various time periods. The large impact of recharge and evaporation on groundwater supplies and water balance in the research area is demonstrated by simulations of climate change scenarios RCP4.5 and RCP8.5.

Originality/value

None of the studies has been done previously to analyze water resources of Dak Lak and the scarcity of water resources is exacerbated during the dry season. Therefore, this study will provide useful insights in the water resource management and the conservation of Dak Lak. The groundwater in Dak Lak can meet the area's water demand, according to the results obtained and water balance in the study area. However, the management of water resources and rigorous monitoring of groundwater extraction activities in the area should receive more attention.

Details

Frontiers in Engineering and Built Environment, vol. 2 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 1 March 1999

P.D. Hedges and T.W. Charnock

Although the environmental impacts of groundwater abstraction and water table recovery are now known, historically they were given scant recognition due to the ad hoc nature of…

1751

Abstract

Although the environmental impacts of groundwater abstraction and water table recovery are now known, historically they were given scant recognition due to the ad hoc nature of the development of aquifers. This paper summarises the potential impacts of groundwater exploitation, and reviews the effects of rising water tables on urban areas following the cessation or reduction of pumping. The use of GIS in assessing the implications for the environment is considered, in particular the coupling of hydrological models to a GIS for evaluating the impact of the drawdown of shallow water tables on agriculture.

Details

Environmental Management and Health, vol. 10 no. 1
Type: Research Article
ISSN: 0956-6163

Keywords

Open Access
Article
Publication date: 5 April 2018

Reza Ghazavi and Haidar Ebrahimi

Groundwater is an important source of water supply in arid and semi-arid areas. The purpose of this study is to predict the impact of climate change on groundwater recharge in an…

4340

Abstract

Purpose

Groundwater is an important source of water supply in arid and semi-arid areas. The purpose of this study is to predict the impact of climate change on groundwater recharge in an arid environment in Ilam Province, west of Iran.

Design/methodology/approach

A three-dimensional transient groundwater flow model (modular finite difference groundwater FLOW model: MODFLOW) was used to simulate the impacts of three climate scenarios (i.e. an average of a long-term rainfall, predicted rainfall in 2015-2030 and three years moving average rainfall) on groundwater recharge and groundwater levels. Various climate scenarios in Long Ashton Research Station Weather Generator were applied to predict weather data.

Findings

HadCM3 climatic model and A2 emission scenario were selected as the best methods for weather data generation. Based on the results of these models, annual precipitation will decrease by 3 per cent during 2015-2030. For three emission scenarios, i.e. an average of a long-term rainfall, predicted rainfall in 2015-2030 and three years moving average rainfall, precipitation in 2030 is estimated to be 265, 257 and 247 mm, respectively. For the studied aquifer, predicted recharge will decrease compared to recharge calculated based on the average of long-term rainfall.

Originality/value

The decline of groundwater level in the study area was 11.45 m during the past 24 years or 0.48 m/year. Annual groundwater depletion should increase to 0.75 m in the coming 16 years via climate change. Climate change adaptation policies in the basin should include changing the crop type, as well as water productivity and irrigation efficiency enhancement at the farm and regional scales.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 1 November 2011

Sarva Mangala Praveena, Mohd Harun Abdullah, Ahmad Zaharin Aris, Mazlin Mokhtar and Kawi Bidin

This paper aims to define the current and potential extent of seawater intrusion in Manukan Island under different scenarios of varying recharge and pumping rates. The calibrated…

Abstract

Purpose

This paper aims to define the current and potential extent of seawater intrusion in Manukan Island under different scenarios of varying recharge and pumping rates. The calibrated model was also used to predict the extent of seawater intrusion in low lying area of Manukan Island for two years with all conditions assumed to remain the same as those in December 2009.

Design/methodology/approach

Different scenarios of varying recharge and pumping rates based on threats received by Manukan Island were investigated. El‐Nino events and overpumping are represented by varying recharge and pumping rates. Simulation was done using SEAWAT‐2000, the latest modeling software available in groundwater modeling that couples flow and transport together.

Findings

The seawater‐freshwater mixing ratio moves landwards after two years of simulation in Scenario 1. In order to control overpumping in this study area, Scenario 2 has resulted in backward movement of the 1.4 percent seawater‐freshwater mixing ratio toward the coast after two years of prediction. The current contamination of the coastal aquifers by seawater intrusion will be more severe with an impact of El‐Nino events on groundwater resources depletion in Scenario 3. Reductions of pumping and recharge rates in Scenario 4 have worsened the seawater intrusion problem. With the aid of artificial recharge in Scenario 5, highest hydraulic heads and lowest chloride concentration were observed.

Practical implications

The sustainable groundwater management selected for Manukan Island's current situation will be Scenario 2. In view of the effects of El‐Nino events in the future, Scenario 5 can be implemented to restore groundwater resources. The numerical model has showed the groundwater condition during El‐Nino events and overpumping illustrated that simulation modeling is an excellent tool to understand the behavior and management of an aquifer system. The output of simulation modeling via numerical model provides a framework toward groundwater management. Thus, current study output with similar approach which will restore groundwater (artificial recharge and reduction of pumping rate) can be applied in other small islands of similar hydrogeological condition and stresses for the purpose of groundwater resource protection.

Originality/value

Briefly, these findings will effectively contribute to water policy analysis, planning and management in the study area to combat current as well as future seawater intrusion problem.

Details

Journal of Modelling in Management, vol. 6 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 7 November 2016

Ismail Abd-Elaty, Hany Farhat Abd Elhamid and Akbar Javadi

The purpose of this paper is to develop and validate a numerical model to study the effect of changing hydraulic parameters on saltwater intrusion in coastal aquifers.

Abstract

Purpose

The purpose of this paper is to develop and validate a numerical model to study the effect of changing hydraulic parameters on saltwater intrusion in coastal aquifers.

Design/methodology/approach

The numerical model SEAWAT is validated and applied to a hypothetical case (Henry problem) and a real case study (Biscayne aquifer, Florida, USA) for different values of hydraulic parameters including; hydraulic conductivity, porosity, dispersion, diffusion, fluid density and solute concentration. The dimensional analysis technique is used to correlate these parameters with the intrusion length.

Findings

The results show that the hydraulic parameters have a clear effect on saltwater intrusion as they increase the intrusion in some cases and decrease it in some other cases. The results indicate that changing hydraulic parameters may be used as a control method to protect coastal aquifers from saltwater intrusion.

Practical implications

The results of the application of the model to the Biscayne aquifer in Florida showed that the intrusion can be reduced to 50 percent when the hydraulic conductivity is reduced to 50 percent. Decreasing hydraulic conductivity by injecting some relatively cheap materials such as bentonite can help to reduce the intrusion of saltwater. So the saltwater intrusion can be reduced with relatively low cost through changing some hydraulic parameters.

Originality/value

A relationship to calculate intrusion length in coastal aquifer is developed and the impact of different hydraulic parameters on saltwater intrusion is highlighted. Control of saltwater intrusion using relatively cheap method is presented.

Details

Engineering Computations, vol. 33 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 November 2021

Fei Tong, Jie Yang, Meng Qiang Duan, Xu Fei Ma and Gao Chao Li

The purpose of this article is to understand the current research status and future development trends in the field of numerical simulation on rock mass grouting.

Abstract

Purpose

The purpose of this article is to understand the current research status and future development trends in the field of numerical simulation on rock mass grouting.

Design/methodology/approach

This article first searched the literature database (EI, Web of Science, CNKI, etc.) for keywords related to the numerical simulation of rock mass grouting to obtain the initial literature database. Then, from the initial database, several documents with strong relevance to the numerical simulation theme of rock mass grouting and high citation rate were selected; some documents from the references were selected as supplements, forming the sample database of this review study (a total of 90 articles). Finally, through sorting out the relationship among the literature, this literature review was carried out.

Findings

The numerical simulation of rock mass grouting is mainly based on the porous media model and the fractured media model. It has experienced the development process from Newtonian fluid to non-Newtonian fluid, from time-invariant viscosity to time-varying viscosity, and from generalized theoretical model to engineering application model. Based on this, this article summarizes four scientific problems that need to be solved in the future in this research field: the law of grout distribution at the cross fissures, the grout diffusion mechanism under multi-field coupling, more accurate grouting theoretical model and simulation technology with strong engineering applicability.

Originality/value

This research systematically analyzes the current research status and shortcomings of numerical simulation on rock mass grouting, summarizes four key issues in the future development of this research field and provides new ideas for the future research on numerical simulation on rock mass grouting.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 July 2012

A.A. Javadi, M.M. Sherif and H.F. Abd‐Elhamid

Seawater intrusion represents a major problem in many coastal aquifers all over the world. It degrades the water‐quality and hence the groundwater may become unsuitable for…

Abstract

Purpose

Seawater intrusion represents a major problem in many coastal aquifers all over the world. It degrades the water‐quality and hence the groundwater may become unsuitable for domestic and agriculture purposes. Due to the direct hydraulic contact between the freshwater and saline water in coastal aquifers and the density difference between the two water bodies, the seawater migrates inland. The problem is exacerbated when the groundwater abstraction rates exceed the natural recharge from rainfall events. The key to controlling this problem is to maintain the proper balance between water being pumped from the aquifer and the amount of water recharging it. The purpose of this paper is to present a coupled transient finite element model for simulation of fluid flow and solute transport in soils with application to study seawater intrusion in coastal aquifers.

Design/methodology/approach

The model includes coupling of fluid flow and solute transport. Transient density‐dependent flow and the dependency of dispersion on velocity are considered. After validation, the model is applied to predict the seawater intrusion in the Wadi Ham aquifer, UAE in vertical sections and the results are compared with those from a commercial code (SEWAT) which was used to simulate seawater intrusion in the aquifer in a horizontal section.

Findings

A good agreement is observed between the results of the current model in the vertical cross‐section and those of SEWAT in the horizontal cross‐section for the case of Wadi Ham. The results show that the model can predict the extent of seawater intrusion (and the transition zone) and distribution of salt concentration in the aquifer with a good accuracy.

Originality/value

The developed model includes coupling of fluid flow and solute transport in saturated and unsaturated porous media. Transient density‐dependent flow and the dependency of dispersion on velocity are considered. The model has been applied to a real world case study. A combination of the results in vertical and horizontal sections has been used to build a 3D picture of seawater intrusion in the aquifer.

Article
Publication date: 27 July 2018

Joaquim Rocha dos Santos, Eduardo Ferreira Franco, Hamilton Coimbra Carvalho, Stefano Armenia, Alessandro Pompei and Carlo Maria Medaglia

The purpose of this study is to analyze the impacts of different policies to address the water supply crisis experienced by the metropolitan region of Sao Paulo during 2013 to…

Abstract

Purpose

The purpose of this study is to analyze the impacts of different policies to address the water supply crisis experienced by the metropolitan region of Sao Paulo during 2013 to 2015 and evaluate the resilience of its water supply system for the coming years.

Design/methodology/approach

The methodology used in this study is based on the system dynamics simulation paradigm, combined with empirical data obtained from the regional water authority.

Findings

The results from the simulations suggest that the first layer of sustainability of the water supply in the region strongly depends on how the system’s operator responds to crises, in particular how it balances policies acting on the supply and demand for the resource.

Practical implications

Severe water crises typically make salient the perception that water is a finite and public resource. Long-term, sustainable management of the system requires a paradigm shift from widespread, old-fashioned beliefs that water is an infinite resource. It also requires active management to increase the system’s preparedness to withstand events caused by climate change.

Originality/value

This study contributes to the system dynamics and water resource management literature by presenting an integrative model to evaluate the resilience of a particular water supply system. Although there are previous studies on this subject, the present one focuses on the role that the water authority plays in a crisis and especially on a specific combination of policies to address an episode of crisis in a system unprepared for it.

Details

Kybernetes, vol. 48 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 25 February 2014

S.H. Ju

This paper develops C++ and Fortran-90 solvers to establish parallel solution procedures in a finite element or meshless analysis program using shared memory computers. The paper…

Abstract

Purpose

This paper develops C++ and Fortran-90 solvers to establish parallel solution procedures in a finite element or meshless analysis program using shared memory computers. The paper aims to discuss these issues.

Design/methodology/approach

The stiffness matrix can be symmetrical or unsymmetrical, and the solution schemes include sky-line Cholesky and parallel preconditioned conjugate gradient-like methods.

Findings

By using the features of C++ or Fortran-90, the stiffness matrix and its auxiliary arrays can be encapsulated into a class or module as private arrays. This class or module will handle how to allocate, renumber, assemble, parallelize and solve these complicated arrays automatically.

Practical implications

The source codes can be obtained online at http//myweb.ncku.edu.tw/∼juju. The major advantage of the scheme is that it is simple and systematic, so an efficient parallel finite element or meshless program can be established easily.

Originality/value

With the minimum requirement of computer memory, an object-oriented C++ class and a Fortran-90 module were established to allocate, renumber, assemble, parallel, and solve the global stiffness matrix, so that the programmer does not need to handle them directly.

Details

Engineering Computations, vol. 31 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2021

Vikram Kumar and Srivastava Granthi

The purpose of this study is to understand the basics of interactions of groundwater and surface water, which is needed for effective management of water resources.

Abstract

Purpose

The purpose of this study is to understand the basics of interactions of groundwater and surface water, which is needed for effective management of water resources.

Design/methodology/approach

The experimental setup was framed using curved flume and the straight flume, which simulates the model of river and groundwater storage, respectively. The model set up further consists, downstream, central and upstream sections where 14 observation wells, which are arranged at a measured distance from the canal side.

Findings

Exit gradient is higher at downstream when the average head differences between canal and river are 31.9 cm and 35.7 cm. Free seepage height is more in the downstream wells than upstream and central wells. At the downstream section, there is a greater chance of instability of the riverbank.

Research limitations/implications

Results will be used for better planning of hydraulic structural design.

Practical implications

Results will help in storing the large water and better irrigation planning for the water acute states and locations.

Originality/value

The originality is own developed physical model and its own first type to understand the basic of interaction and effects.

Details

World Journal of Engineering, vol. 18 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 12