Search results

1 – 2 of 2
Article
Publication date: 17 July 2019

Yong-Hua Li, Ziqiang Sheng, Pengpeng Zhi and Dongming Li

How to get a lighter and stronger anti-rolling torsion bar has become a barrier for the development of high-speed railway vehicles. The purpose of this paper is to realize the…

Abstract

Purpose

How to get a lighter and stronger anti-rolling torsion bar has become a barrier for the development of high-speed railway vehicles. The purpose of this paper is to realize the multi-objective optimization of an anti-rolling torsion bar with a Modified Non-dominated Sorting Genetic Algorithm III (MNSGA-III), which aims to obtain a better design scheme of an anti-rolling torsion bar device.

Design/methodology/approach

First, the Non-dominated Sorting Genetic Algorithm III (NSGA-III) uses a simulated binary crossover (SBX) operator and a polynomial mutation operator, while the MNSGA-III algorithm proposed in this paper introduces an arithmetic crossover and an adaptive mutation operator to change the crossover and mutate operator in NSGA-III. Second, two algorithms are tested by ZDT3, ZDT4 functions. Both algorithms set the same population size and evolutionary generation, and then compare the results of NSGA-III and MNSGA-III. Finally, MNSGA-III is applied to the multi-objective model of an anti-rolling torsion bar which is established by taking the mass and stiffness of the torsion bar as the optimization object. After that, it obtains the Pareto solution set by solving the multi-objective model with MNSGA-III. The only optimal solution selected from the Pareto solution set is compared with the traditional design scheme of an anti-rolling torsion bar.

Findings

The MNSGA-III converges faster than NSGA-III. Besides, MNSGA-III has better diversity of Pareto solutions than NSGA-III and is closer to the ideal Pareto frontier. Comparing with the results before the optimization, it shows that the volume of the anti-rolling torsion bar reduces by 1.6 percent and the stiffness increases by 3.3 percent. The optimized data verifies the effectiveness of this method proposed in this paper.

Originality/value

The simulated binary crossover operator and polynomial mutation operator of NSGA-III are changed into an arithmetic crossover operator and an adaptive mutation operator, respectively, which improves the optimization performance of the algorithm.

Details

International Journal of Structural Integrity, vol. 12 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 2 of 2