Search results

1 – 10 of 116
Article
Publication date: 1 January 2024

Shahrzad Yaghtin and Joel Mero

Machine learning (ML) techniques are increasingly important in enabling business-to-business (B2B) companies to offer personalized services to business customers. On the other…

Abstract

Purpose

Machine learning (ML) techniques are increasingly important in enabling business-to-business (B2B) companies to offer personalized services to business customers. On the other hand, humans play a critical role in dealing with uncertain situations and the relationship-building aspects of a B2B business. Most existing studies advocating human-ML augmentation simply posit the concept without providing a detailed view of augmentation. Therefore, the purpose of this paper is to investigate how human involvement can practically augment ML capabilities to develop a personalized information system (PIS) for business customers.

Design/methodology/approach

The authors developed a research framework to create an integrated human-ML PIS for business customers. The PIS was then implemented in the energy sector. Next, the accuracy of the PIS was evaluated using customer feedback. To this end, precision, recall and F1 evaluation metrics were used.

Findings

The computed figures of precision, recall and F1 (respectively, 0.73, 0.72 and 0.72) were all above 0.5; thus, the accuracy of the model was confirmed. Finally, the study presents the research model that illustrates how human involvement can augment ML capabilities in different stages of creating the PIS including the business/market understanding, data understanding, data collection and preparation, model creation and deployment and model evaluation phases.

Originality/value

This paper offers novel insight into the less-known phenomenon of human-ML augmentation for marketing purposes. Furthermore, the study contributes to the B2B personalization literature by elaborating on how human experts can augment ML computing power to create a PIS for business customers.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 20 December 2022

Biyanka Ekanayake, Alireza Ahmadian Fard Fini, Johnny Kwok Wai Wong and Peter Smith

Recognising the as-built state of construction elements is crucial for construction progress monitoring. Construction scholars have used computer vision-based algorithms to…

Abstract

Purpose

Recognising the as-built state of construction elements is crucial for construction progress monitoring. Construction scholars have used computer vision-based algorithms to automate this process. Robust object recognition from indoor site images has been inhibited by technical challenges related to indoor objects, lighting conditions and camera positioning. Compared with traditional machine learning algorithms, one-stage detector deep learning (DL) algorithms can prioritise the inference speed, enable real-time accurate object detection and classification. This study aims to present a DL-based approach to facilitate the as-built state recognition of indoor construction works.

Design/methodology/approach

The one-stage DL-based approach was built upon YOLO version 4 (YOLOv4) algorithm using transfer learning with few hyperparameters customised and trained in the Google Colab virtual machine. The process of framing, insulation and drywall installation of indoor partitions was selected as the as-built scenario. For training, images were captured from two indoor sites with publicly available online images.

Findings

The DL model reported a best-trained weight with a mean average precision of 92% and an average loss of 0.83. Compared to previous studies, the automation level of this study is high due to the use of fixed time-lapse cameras for data collection and zero manual intervention from the pre-processing algorithms to enhance visual quality of indoor images.

Originality/value

This study extends the application of DL models for recognising as-built state of indoor construction works upon providing training images. Presenting a workflow on training DL models in a virtual machine platform by reducing the computational complexities associated with DL models is also materialised.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 9 January 2024

Visar Hoxha

The purpose of this study is to carry out a comparative analysis of four machine learning models such as linear regression, decision trees, k-nearest neighbors and support vector…

Abstract

Purpose

The purpose of this study is to carry out a comparative analysis of four machine learning models such as linear regression, decision trees, k-nearest neighbors and support vector regression in predicting housing prices in Prishtina.

Design/methodology/approach

Using Python, the models were assessed on a data set of 1,512 property transactions with mean squared error, coefficient of determination, mean absolute error and root mean squared error as metrics. The study also conducts variable importance test.

Findings

Upon preprocessing and standardization of the data, the models were trained and tested, with the decision tree model producing the best performance. The variable importance test found the distance from central business district and distance to the road leading to central business district as the most relevant drivers of housing prices across all models, with the exception of support vector machine model, which showed minimal importance for all variables.

Originality/value

To the best of the author’s knowledge, the originality of this research rests in its methodological approach and emphasis on Prishtina's real estate market, which has never been studied in this context, and its findings may be generalizable to comparable transitional economies with booming real estate sector like Kosovo.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 22 September 2023

Xiying Yao and Xuetao Yang

Since crude oil is crucial to the nation's economic growth, crude oil futures are closely related to many other markets. Accurate forecasting can offer investors trustworthy…

Abstract

Purpose

Since crude oil is crucial to the nation's economic growth, crude oil futures are closely related to many other markets. Accurate forecasting can offer investors trustworthy guidance. Numerous studies have begun to consider creating new metrics from social networks to improve forecasting models in light of their rapid development. To improve the forecasting of crude oil futures, the authors suggest an integrated model that combines investor sentiment and attention.

Design/methodology/approach

This study first creates investor attention variables using Baidu search indices and investor sentiment variables for medium sulfur crude oil (SC) futures by collecting comments from financial forums. The authors feed the price series into the NeuralProphet model to generate a new feature set using the output subsequences and predicted values. Next, the authors use the CatBoost model to extract additional features from the new feature set and perform multi-step predictions. Finally, the authors explain the model using Shapley additive explanations (SHAP) values and examine the direction and magnitude of each variable's influence.

Findings

The authors conduct forecasting experiments for SC futures one, two and three days in advance to evaluate the effectiveness of the proposed model. The empirical results show that the model is a reliable and effective tool for predicting, and including investor sentiment and attention variables in the model enhances its predictive power.

Research limitations/implications

The data analyzed in this paper span from 2018 through 2022, and the forecast objectives only apply to futures prices for those years. If the authors alter the sample data, the experimental process must be repeated, and the outcomes will differ. Additionally, because crude oil has financial characteristics, its price is influenced by various external circumstances, including global epidemics and adjustments in political and economic policies. Future studies could consider these factors in models to forecast crude oil futures price volatility.

Practical implications

In conclusion, the proposed integrated model provides effective multistep forecasts for SC futures, and the findings will offer crucial practical guidance for policymakers and investors. This study also considers other relevant markets, such as stocks and exchange rates, to increase the forecast precision of the model. Furthermore, the model proposed in this paper, which combines investor factors, confirms the predictive ability of investor sentiment. Regulators can utilize these findings to improve their ability to predict market risks based on changes in investor sentiment. Future research can improve predictive effectiveness by considering the inclusion of macro events and further model optimization. Additionally, this model can be adapted to forecast other financial markets, such as stock markets and other futures products.

Originality/value

The authors propose a novel integrated model that considers investor factors to enhance the accuracy of crude oil futures forecasting. This method can also be applied to other financial markets to improve their forecasting efficiency.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 29 January 2024

Juan Manuel Aristizábal, Edwin Tarapuez and Carlos Alberto Astudillo

This study aims to analyze the entrepreneurial intention (EI) of Colombian researchers using machine learning (ML) techniques, considering their academic activity, contexts and…

Abstract

Purpose

This study aims to analyze the entrepreneurial intention (EI) of Colombian researchers using machine learning (ML) techniques, considering their academic activity, contexts and social norms (SN).

Design/methodology/approach

Unsupervised classification techniques were applied, including principal component analysis, hierarchical clustering with the Ward method and a logistic model to evaluate the classification. This was done to group researchers according to their characteristics and EI.

Findings

The methodology used allowed the identification of three groups of academics with distinct characteristics, of which two showed a high presence of EI. The results indicate that EI is influenced by the connection with the private sector (consulting, intellectual property and applied research) and by the lack of institutional support from universities. Regarding SN, only the preference for entrepreneurial activity over being an employee and the social appreciation of entrepreneurial dedication were identified as predictors of EI.

Originality/value

The use of ML techniques to study the EI of researchers is uncommon. This study highlights the ability of the methodology used to identify differences between two groups of academics with similar characteristics but different levels of EI. One group was identified that, despite rejecting values associated with entrepreneurs, has a high predisposition to develop a career as an entrepreneur. This provides valuable information for designing policies that promote EI among Colombian researchers.

Details

Journal of Entrepreneurship in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4604

Keywords

Article
Publication date: 8 March 2024

Feng Zhang, Youliang Wei and Tao Feng

GraphQL is a new Open API specification that allows clients to send queries and obtain data flexibly according to their needs. However, a high-complexity GraphQL query may lead to…

Abstract

Purpose

GraphQL is a new Open API specification that allows clients to send queries and obtain data flexibly according to their needs. However, a high-complexity GraphQL query may lead to an excessive data volume of the query result, which causes problems such as resource overload of the API server. Therefore, this paper aims to address this issue by predicting the response data volume of a GraphQL query statement.

Design/methodology/approach

This paper proposes a GraphQL response data volume prediction approach based on Code2Vec and AutoML. First, a GraphQL query statement is transformed into a path collection of an abstract syntax tree based on the idea of Code2Vec, and then the query is aggregated into a vector with the fixed length. Finally, the response result data volume is predicted by a fully connected neural network. To further improve the prediction accuracy, the prediction results of embedded features are combined with the field features and summary features of the query statement to predict the final response data volume by the AutoML model.

Findings

Experiments on two public GraphQL API data sets, GitHub and Yelp, show that the accuracy of the proposed approach is 15.85% and 50.31% higher than existing GraphQL response volume prediction approaches based on machine learning techniques, respectively.

Originality/value

This paper proposes an approach that combines Code2Vec and AutoML for GraphQL query response data volume prediction with higher accuracy.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 11 May 2023

Wei Zhang, Chentao Liu, Jiming Yao and Shuangshuang Li

This study aims to produce a superhydrophobic fabric surface with a layered rough structure and which are resistant to droplet adhesion. Polydimethylsiloxane (PDMS) systems doped…

Abstract

Purpose

This study aims to produce a superhydrophobic fabric surface with a layered rough structure and which are resistant to droplet adhesion. Polydimethylsiloxane (PDMS) systems doped with stearic acid modified titanium dioxide (SA-TiO2) nanoparticles was sprayed onto the surface of cotton fabric.

Design/methodology/approach

This experiment therefore uses a simple method to prepare superhydrophobic textiles by spraying SA-TiO2 particles mixed with PDMS onto the surface of cotton fabrics. The effects of the ratio of stearic acid to TiO2, spraying times and tension on the apparent morphological structure and hydrophobic properties of the cotton fabric were investigated.

Findings

The results showed that the stearic acid-modified TiO2 nanoparticles were hydrophobic and more uniformly dispersed in the PDMS solution. When the modification ratio of stearic acid to TiO2 was 3:5, the water contact angle of cotton fabric was 155.48° and sliding angle was 6.67° under the applied tension for three times of spraying, showing superhydrophobicity. The fabric shows super hydrophobic and anti-adhesive properties to a wide range of liquids such as cola, dyeing liquids, tea, milk and simulated blood. The surface tension of the liquid shows a negative correlation with its adhesion to the fabric.

Research limitations/implications

The SA-TiO2 and PDMS were applied to the fabric surface by spraying, which not only gave the fabric superhydrophobic properties, but also created anti-adhesion to a wide range of droplets.

Practical implications

The superhydrophobic cotton fabrics prepared by this method showed good anti-adhesive behavior to common stains and simulated blood and can be used in the development of medical protective textiles.

Originality/value

Modification of TiO2 with stearic acid to prepare SA-TiO2 with excellent hydrophobic properties, which was mixed with PDMS to make suspensions. Fluorine-free superhydrophobic fabrics were prepared by spraying method. It also exhibited excellent anti-adhesive properties against blood, providing a reference for the preparation of self-cleaning and anti-adhesive surgical gowns.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 22 August 2023

Brijesh Sivathanu, Rajasshrie Pillai, Mahek Mahtta and Angappa Gunasekaran

This study aims to examine the tourists' visit intention by watching deepfake destination videos, using Information Manipulation and Media Richness Theory.

1035

Abstract

Purpose

This study aims to examine the tourists' visit intention by watching deepfake destination videos, using Information Manipulation and Media Richness Theory.

Design/methodology/approach

This study conducted a primary survey utilizing a structured questionnaire. In total, 1,360 tourists were surveyed, and quantitative data analysis was done using PLS-SEM.

Findings

The results indicate that the factors that affect the tourists' visit intention after watching deepfake videos include information manipulation tactics, trust and media richness. This study also found that perceived deception and cognitive load do not influence the tourists' visit intention.

Originality/value

The originality/salience of this study lies in the fact that this is possibly among the first to combine the Media Richness Theory and Information Manipulation for understanding tourists' visit intention and post-viewing deepfake destination videos.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

1 – 10 of 116