Search results

1 – 10 of 60
Article
Publication date: 29 November 2023

Devendra Pratap Singh, Vijay Kumar Dwivedi and Mayank Agarwal

The purpose of this study is to investigate and evaluate the impact of varying proportions of reinforcement on the mechanical properties of a modified Al2O3-LM6 cast composite…

Abstract

Purpose

The purpose of this study is to investigate and evaluate the impact of varying proportions of reinforcement on the mechanical properties of a modified Al2O3-LM6 cast composite under self-pouring temperature conditions. This study aims to determine the optimal mixture proportion of fine powders of Al, Si and xAl2O3 (with x values of 2%, 3% and 4%) through the application of design of experiment (DoE) and statistical analysis using the Minitab software. This study also involved evaluating the microstructural estimation and other physical properties of the cast composite to understand the combined effect of the reinforcement proportion on the material’s properties.

Design/methodology/approach

The researchers initially mixed the powders through ball milling and then compacted the moisture-free powder mix in a closed steel die. The resulting preforms were heated at the self-pouring temperature in an inert environment to fabricate the final cast composite. By applying DoE and performing an analysis of variance (ANOVA), the researchers sought to optimize the mixture proportion that would yield the best mechanical properties.

Findings

The experimental results indicated that a mixture combination of 83.5% Al blended with 12.5% Si and 4% Al2O3 led to the greatest improvement in mechanical properties, specifically in terms of increased density, hardness and impact strength. The ANOVA further supported the interaction effect of each processing parameter on the observed results. The results of this study offer valuable insights for the fabrication of modified Al2O3-LM6 cast composites under self-pouring temperature conditions. The identified optimal mixture proportion provides guidance for manufacturing processes and material selection to achieve improved mechanical properties in similar applications.

Originality/value

This study focuses on a specific composite material consisting of modified Al2O3 and LM6. Although Al2O3 and LM6 have been studied individually in various contexts, the combination of these materials and their impact on mechanical properties under self-pouring temperature conditions is a novel aspect of this research. The researchers use DoE methodology, along with statistical analysis using Minitab software, to optimize the mixture proportion and analyze the data. This systematic approach allows for a comprehensive exploration of the parameter space and the identification of significant factors that influence the mechanical properties of the composite.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 February 2024

Mohamed Bechir Ben Hamida

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration…

Abstract

Purpose

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration selected according to a lower temperature. This study provides valuable insights into how to design LED arrays with lower junction temperatures.

Design/methodology/approach

To determine the best configuration of a heat sink, a numerical study was conducted in Comsol Multiphysics on 10 different configurations. The configuration with the lowest junction temperature was selected for further analysis. The number of LED chips, pitch and LED power were then varied to determine the optimal configuration for this heat sink. A general equation for the average LED temperature as a function of these three factors was derived using Minitab software.

Findings

Among 10 configurations of the rectangular heat sink, we deduce that the best configuration corresponds to the first design having 1 mm of width, 0.5 mm of height and 45 mm of length. The average temperature for this design is 50.5 C. For the power of LED equal to 50 W–200 W, the average temperature of this LED drops when the number of LED chips reduces and the pitch size decreases. Indeed, the best array-LED corresponds to 64 LED chips and a pitch size of 0.5 mm. In addition, a generalization equation for average temperature is determined as a function of the number of LED chips, pitch and power of LED which are key factors for reducing the Junction temperature.

Originality/value

The study is original in its focus on three factors that have not been studied together in previous research. A numerical simulation method is used to investigate the impact of the three factors, which is more accurate and reliable than experimental methods. The study considers a wide range of values for the three factors, which allows for a more comprehensive understanding of their impact. It derives a general equation for the average temperature of the LED, which can be used to design LED arrays with desired junction temperatures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

478

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 27 January 2023

Damira Dairabayeva, Asma Perveen and Didier Talamona

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a…

1020

Abstract

Purpose

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a weak bonding strength between dissimilar materials. Low interfacial bonding strength leads to defects, anisotropy and temperature gradient in materials which negatively impact the mechanical performance of the multi-material prints. The purpose of this study was to assess the performance of different interface geometry designs in terms of the mechanical properties of the specimens.

Design/methodology/approach

Tensile test specimens were printed using: mono-material without a boundary interface, mono-material with the interface geometries (Face-to-face; U-shape; T-shape; Dovetail; Encapsulation; Mechanical interlocking; and Overlap) and multi-material with the interface geometries. The materials chosen with high and low compatibility were Tough polylactic acid (PLA) and TPU.

Findings

The main results of this study indicate that the interface geometries with the mechanical constriction between materials provide better structural integrity to the specimens. Moreover, in the case of the mono-material parts, the most effective interface design was the mechanical interlocking for both Tough PLA and TPU. On the other hand, in the case of multi-material specimens, the encapsulation showed the highest ultimate tensile strength, whereas the overlap and T-shape presented more robust bonding.

Originality/value

This study examines the mechanical performance, particularly tensile strength, strain at break, Young’s modulus and yield strength of different interface designs which were not studied in the previous studies.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 May 2022

Lutfi Özdemir, Mustafa Batuhan Kurt, Ahmet Akgül, Mehmet Oktav and Mujgan Nayci Duman

The purpose of this paper is to optimize the key parameters (mesh count, paper type and ink type) in screen printing, which are affecting the printed ink volume. The objective of…

Abstract

Purpose

The purpose of this paper is to optimize the key parameters (mesh count, paper type and ink type) in screen printing, which are affecting the printed ink volume. The objective of the optimization was to maximize the color reliability by decreasing the color difference (ΔE value) of the prints while minimizing the ink consumption. Screen printing is still dominating the printing industry to make cost-effective production when high volumes are needed.

Design/methodology/approach

The experiment was designed using the Taguchi method, and the samples were prepared with screen-printing by using the standard squeegee angle and pressure. The effect of mesh count, ink type and paper type on ink consumption was evaluated with using analysis of variances and main effects plots of S/N ratio and standard deviation.

Findings

The factors ink type, paper type and mesh count were found significant for ink consumption due to their Probability (P) values which were lower than 0.05. It was determined that the mesh count was the most critical variable with the analysis of variance. The analysis showed that the selection of an optimum mesh count was the key to controlling the amount of the deposited ink. Although mesh counts were inversely proportional with the ink consumptions, they did not affect the color differences as expected.

Originality/value

The optimization of process parameters, that are most effective on the print quality, is necessary to minimize the ink usage and lower the costs and environmental impact without exceeding the desired ΔE value limits.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 April 2024

Bikram Jit Singh, Rippin Sehgal, Ayon Chakraborty and Rakesh Kumar Phanden

The use of technology in 4th industrial revolution is at its peak. Industries are trying to reduce the consumption of resources by effectively utilizing information and technology…

Abstract

Purpose

The use of technology in 4th industrial revolution is at its peak. Industries are trying to reduce the consumption of resources by effectively utilizing information and technology to connect different functioning agents of the manufacturing industry. Without digitization “Industry 4.0” will be a virtual reality. The present survey-based study explores the factual status of digital manufacturing in the Northern India.

Design/methodology/approach

After an extensive literature review, a questionnaire was designed to gather different viewpoints of Indian industrial practitioners. The first half contains questions related to north Indian demographic factors which may affect digitalization of India. The latter half includes the queries concerned with various operational factors (or drivers) driving the digital revolution without ignoring Indian constraints.

Findings

The focus of this survey was to understand the current level of digital revolution under the ongoing push by the Indian government focused upon digital movement. The analysis included non-parametric testing of the various demographic and functional factors impacting the digital echoes, specifically in Northern India. Findings such as technological upgradations were independent of type of industry, the turnover or the location. About 10 key operational factors were thoughtfully grouped into three major categories—internal Research and Development (R&D), the capability of the supply chain and the capacity to adapt to the market. These factors were then examined to understand how they contribute to digital manufacturing, utilizing an appropriate ordinal logistic regression. The resulting predictive analysis provides seldom-seen insights and valuable suggestions for the most effective deployment of digitalization in Indian industries.

Research limitations/implications

The country-specific Industry 4.0 literature is quite limited. The survey mainly focuses on the National Capital Region. The number of demographic and functional factors can further be incorporated. Moreover, an addition of factors related to ecology, environment and society can make the study more insightful.

Practical implications

The present work provides valuable insights about the current status of digitization and expects to facilitate public or private policymakers to implement digital technologies in India with less efforts and the least resistance. It empowers India towards Industry 4.0 based tools and techniques and creates new socio-economic dimensions for the sustainable development.

Originality/value

The quantitative nature of the study and its statistical predictions (data-based) are novel. The clubbing of similar success factors to avoid inter-collinearity and complexity is seldom seen. The predictive analytics provided in this study is quite elusive as it provides directions with logic. It will help the Indian Government and industrial strategists to plan and perform their interventions accordingly.

Details

Journal of Strategy and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-425X

Keywords

Open Access
Article
Publication date: 3 April 2024

Tatiana da Costa Reis Moreira, Daniel Luiz de Mattos Nascimento, Yelena Smirnova and Ana Carla de Souza Gomes dos Santos

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for…

Abstract

Purpose

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for employee occupational exams and address the real-world issue of high-variability exams that may arise.

Design/methodology/approach

This study uses mixed methods, combining qualitative and quantitative data collection. A detailed case study assesses the impact of LSS interventions on the exam management process and tests the applicability of the proposed LSS 4.0 framework for employee occupational exams.

Findings

The results reveal that changing the health service supplier in the explored organization caused a substantial raise in occupational exams, leading to increased costs. By using syntactic interoperability, lean, six sigma and DMAIC approaches, improvements were identified, addressing process deviations and information requirements. Implementing corrective actions improved the exam process, reducing the number of exams and associated expenses.

Research limitations/implications

It is important to acknowledge certain limitations, such as the specific context of the case study and the exclusion of certain exam categories.

Practical implications

The practical implications of this research are substantial, providing organizations with valuable managerial insights into improving efficiency, reducing costs and ensuring regulatory compliance while managing occupational exams.

Originality/value

This study fills a research gap by applying LSS 4.0 to occupational exam management, offering a practical framework for organizations. It contributes to the existing knowledge base by addressing a relatively novel context and providing a detailed roadmap for process optimization.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Article
Publication date: 20 November 2023

Reddy K. Prasanth Kumar, Nageswara Rao Boggarapu and S.V.S. Narayana Murty

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and…

Abstract

Purpose

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and demonstrated their validity through comparison of test data. The method suggests a few tests as per the orthogonal array and provides complete information for all combinations of levels and process variables. This method also provides the estimated range of output responses so that the scatter in the repeated tests can be assessed prior to the tests.

Design/methodology/approach

In order to obtain defect-free products meeting the required specifications, researchers have conducted extensive experiments using powder bed fusion (PBF) process measuring the performance indicators (namely, relative density, surface roughness and hardness) to specify a set of printing parameters (namely, laser power, scanning speed and hatch spacing). A simple and reliable multi-objective optimization method is considered in this paper for specifying a set of optimal process parameters with SS316 L powder. It was reported that test samples printed even with optimal set of input variables revealed irregular shaped, microscopic porosities and improper melt pool formation.

Findings

Finally, based on detailed analysis, it is concluded that it is impossible to express the performance indicators, explicitly in terms of equivalent energy density (E_0ˆ*), which is a combination of multiple sets of selective laser melting (SLM) process parameters, with different performance indicators. Empirical relations for the performance indicators are developed in terms of SLM process parameters. Test data are within/close to the expected range.

Practical implications

Based on extensive analysis of the SS316 L data using modified Taguchi approach, the optimized process parameters are laser power = 298 W, scanning speed = 900 mm/s and hatch distance = 0.075 mm, for which the results of surface roughness = 2.77 Ra, relative density = 99.24%, hardness = 334 Hv and equivalent energy density is 4.062. The estimated data for the same are surface roughness is 3.733 Ra, relative density is 99.926%, hardness is 213.64 Hv and equivalent energy density is 3.677.

Originality/value

Even though equivalent energy density represents the energy input to the process, the findings of this paper conclude that energy density should no longer be considered as a dependent process parameter, as it provides multiple results for the specified energy density. This aspect has been successfully demonstrated in this paper using test data.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 8 August 2023

Elisa Verna, Gianfranco Genta and Maurizio Galetto

The purpose of this paper is to investigate and quantify the impact of product complexity, including architectural complexity, on operator learning, productivity and quality…

Abstract

Purpose

The purpose of this paper is to investigate and quantify the impact of product complexity, including architectural complexity, on operator learning, productivity and quality performance in both assembly and disassembly operations. This topic has not been extensively investigated in previous research.

Design/methodology/approach

An extensive experimental campaign involving 84 operators was conducted to repeatedly assemble and disassemble six different products of varying complexity to construct productivity and quality learning curves. Data from the experiment were analysed using statistical methods.

Findings

The human learning factor of productivity increases superlinearly with the increasing architectural complexity of products, i.e. from centralised to distributed architectures, both in assembly and disassembly, regardless of the level of overall product complexity. On the other hand, the human learning factor of quality performance decreases superlinearly as the architectural complexity of products increases. The intrinsic characteristics of product architecture are the reasons for this difference in learning factor.

Practical implications

The results of the study suggest that considering product complexity, particularly architectural complexity, in the design and planning of manufacturing processes can optimise operator learning, productivity and quality performance, and inform decisions about improving manufacturing operations.

Originality/value

While previous research has focussed on the effects of complexity on process time and defect generation, this study is amongst the first to investigate and quantify the effects of product complexity, including architectural complexity, on operator learning using an extensive experimental campaign.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of 60