Search results

1 – 10 of 315
Article
Publication date: 1 May 1992

CHUAN SONG WU

Mathematical models of the metal‐inert gas (MIG) welding process may be used to study the influence of various welding parameters on weld dimensions, to assist in the development…

Abstract

Mathematical models of the metal‐inert gas (MIG) welding process may be used to study the influence of various welding parameters on weld dimensions, to assist in the development of welding procedures, and to aid in the generation of process control algorithms for automated applications. A three‐dimensional model for convection and heat transfer in MIG weld pools has been formulated and solved using the finite difference technique. The energy exchange between the pool and the molten filler metal droplets via spray transfer, and the interaction of electromagnetic, buoyant, surface tension, droplet impact and plasma jet forces were considered. MIG welding was carried out using mild steel plate with heat input from 7 to 17.5 KJ/cm. The calculated and experimentally observed weld bead dimensions were compared. Occurrence of finger penetration phenomena only in MIG welds are adequately explained through the application of the proposed model. Good agreement is demonstrated between predicted weld dimensions and experimentally measured ones.

Details

Engineering Computations, vol. 9 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 April 2024

Satyaveer Singh, N. Yuvaraj and Reeta Wattal

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Abstract

Purpose

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Design/methodology/approach

This paper used cold metal transfer (CMT) and pulse metal-inert gas (MIG) welding processes to study the weld-on-bead geometry of AA2099-T86 alloy. This study used Taguchi's approach to find the optimal setting of the input welding parameters. The welding current, welding speed and contact-tip-to workpiece distance were the input welding parameters for finding the output responses, i.e. weld penetration, dilution and heat input. The L9 orthogonal array of Taguchi's approach was used to find out the optimal setting of the input parameters.

Findings

The optimal input welding parameters were determined with combined output responses. The predicted optimum welding input parameters were validated through confirmation tests. Analysis of variance showed that welding speed is the most influential factor in determining the weld bead geometry of the CMT and pulse MIG welding techniques.

Originality/value

The heat input and weld bead geometry are compared in both welding processes. The CMT welding samples show superior defect-free weld beads than pulse MIG welding due to lesser heat input and lesser dilution.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Article
Publication date: 1 February 2004

282

Abstract

Details

Industrial Robot: An International Journal, vol. 31 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 3 May 2022

Qingxiang Zhou, Fang Liu, Jingming Li, Jiankui Li, Shuangnan Zhang and Guixi Cai

This study aims to solve the problem of weld quality inspection, for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin…

Abstract

Purpose

This study aims to solve the problem of weld quality inspection, for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness (2–4 mm), the conventional nondestructive testing method of weld quality is difficult to implement.

Design/methodology/approach

In order to solve this problem, the ultrasonic creeping wave detection technology was proposed. The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks. The detection technology was used to test the actual welded test blocks, and compared with the results of X-ray test and destructive test (tensile test) to verify the accuracy of the ultrasonic creeping wave test results.

Findings

It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects. However, due to special detection method and protection, the detection speed is slow, which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body. It can be used as an auxiliary detection method for a small number of sampling inspection. The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more, the results of creeping wave detection correspond well with the actual incomplete penetration defects.

Originality/value

The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints. It is recommended to use the echo amplitude of the 10 mm × 0.2 mm × 0.5 mm notch as the criterion for weld qualification.

Article
Publication date: 23 October 2007

Mike Wilson

The paper aims to report on a new welding technology, TIP TIG.

Abstract

Purpose

The paper aims to report on a new welding technology, TIP TIG.

Design/methodology/approach

The principle of operation and benefits of the technology are described together with a typical application.

Findings

The study finds that the technology provides the quality of TIG welding at the speeds of MIG welding, providing significant cost savings to the user.

Practical implications

TIP TIG provides a good opportunity for all users of robotic MIG welding to improve the quality of their product and reduce their costs.

Originality/value

The paper introduces a new and useful technology to the robot industry.

Details

Industrial Robot: An International Journal, vol. 34 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 September 2005

A. Sreenathbabu, K.P. Karunakaran and C. Amarnath

This paper discusses the optimization of the process parameters for the hybrid‐layered manufacturing (HLM) process during its weld layer deposition with subsequent surface…

3175

Abstract

Purpose

This paper discusses the optimization of the process parameters for the hybrid‐layered manufacturing (HLM) process during its weld layer deposition with subsequent surface machining in attaining the desired accuracy and contour profile of the deposited weld layer thickness.

Design/methodology/approach

The HLM process integrates the synergic metal inert gas (MIG) – metal active gas (MAG) welding process for depositing the metal layer of a desired slice thickness and perform the computer numerical control (CNC) machining process on the deposited layer to enhance both the surface quality and dimensional accuracy of the deposited layer. For the HLM process the weld bead geometry plays a vital role in determination of the layer thickness, surface quality, build time, heat input into the deposited layer and the hardness attained by the prototype. A feasible weld bead width and heights are to be formulated for the exterior contour weld path deposition and for the interior weld cladding. Thus, Taguchi methodology was employed with minimum number of trails as compared with classical statistical experiments. This study systematically reveals the complex cause‐effect relationships between design parameters and performance.

Findings

Statistical design of experiments using orthogonal arrays and signal‐to‐noise (S/N) ratios are performed to constitute the core of the robust design procedure. Experimental confirmations of the performance characteristic using the derived optimal levels of process parameters are provided to confirm the effectiveness of this approach.

Research limitations/implications

The welding parameters such as current, voltage, arc length, wire feed rates, wire stick‐out distance, shielding gas, filler wire diameter, weld speed, etc. will influence on the deposited weld bead geometry. Further investigations are to be carried out during adaptive layer deposition on the induced thermal stresses and its influence on the hardness of the deposited weld layer.

Originality/value

This paper describes a low cost direct rapid tooling process, HLM. This unique methodology would reduce the cost and time to make molds and dies that are used in batch production.

Details

Rapid Prototyping Journal, vol. 11 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 2002

J. Norberto Pires, A. Loureiro, T. Godinho, P. Ferreira, B. Fernando and J. Morgado

Associating robot manipulators with industrial welding operations is common and maybe one of the most successful applications of industrial robots. Nevertheless, it is far from…

Abstract

Associating robot manipulators with industrial welding operations is common and maybe one of the most successful applications of industrial robots. Nevertheless, it is far from being a solved technological process, mainly because the welding process is not fully understood but also because robots are still at an early satge of development, being difficult to use and program by regular operators. This is also true for Human Machine Interfaces (HMI), which are not intuitive to use and are therefore unsatisfactory. In this paper we discuss these problems and present a system designed with the double objective of serving our R&D efforts on welding applications, but also our need to assist industrial partners working with welding setups. Frequently industrial partners are not happy with available commercial systems, requiring tailored solutions that could be adapted to several robots and robot controllers. The developed system is explained in some detail, and demonstrated using two test cases which reproduce two situations very common in industry: multi‐layer butt welding (used on big structures requiring very strong welds) and multi‐point fillet welding (used for example on structural pieces for the construction industry).

Details

Industrial Robot: An International Journal, vol. 29 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 2002

Anna Kochan

Reviews the Essen Schweissen und Schneiden cutting and welding trade show, identifies mounting trend for electric servo guns to replace pneumatic welding guns, reports on growing…

1105

Abstract

Reviews the Essen Schweissen und Schneiden cutting and welding trade show, identifies mounting trend for electric servo guns to replace pneumatic welding guns, reports on growing interest in aluminium welding and outlines the different solutions proposed, assesses the latest developments in remote laser welding technology.

Details

Assembly Automation, vol. 22 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 September 1996

Teodiano Freire Bastos, L. Calderón, J.M. Martín and R. Ceres

Evaluates the applicability of ultrasonic sensors in a welding environment and reports on experimental measurements carried out with a sensory head containing ultrasonic…

181

Abstract

Evaluates the applicability of ultrasonic sensors in a welding environment and reports on experimental measurements carried out with a sensory head containing ultrasonic transducers with different frequencies. Analyses the effects on the sensors of factors such as noise, temperature and shielding gas flow and concludes by suggesting appropriate protective measures for the sensors for them to operate effectively in a welding environment.

Details

Sensor Review, vol. 16 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 May 2011

J.D. Costa, J.A.M. Ferreira and L.P. Borrego

Welded components are often subjected to variable amplitude service loads, increasing the uncertainty of fatigue life due to material strength, notch geometries, defect content…

Abstract

Purpose

Welded components are often subjected to variable amplitude service loads, increasing the uncertainty of fatigue life due to material strength, notch geometries, defect content and residual stresses. In the case of friction stir welding (FSW) of aluminium alloys no data were found available concerning fatigue behaviour under variable amplitude loading. The purpose of this paper is to determine the fatigue strength of friction stir welds in AA6082‐T6 under constant and variable amplitude loading and analyse the validity of Miner's rule for these specific welding conditions.

Design/methodology/approach

Fatigue tests were carried out in a servo‐hydraulic testing machine using a stress ratio of R=0. Typified Gassner amplitude spectra were considered, using four shape exponent values. Microhardness tests were performed to characterize the Vickers hardness profile in the vicinity of the weld area. Relatively to the base material (BM), the FSW process leads to a decrease of the static mechanical properties.

Findings

Detailed examination revealed a hardness decrease in the thermo‐mechanically affected zone and the nugget zone average hardness was found to be lower than the base alloy hardness. The comparison with data collected from the literature shows that FSW specimens present higher fatigue resistance than specimens welded by metal inert gas and tungsten inert gas processes. However, they still have lower fatigue lives than the BM. Using the equivalent stress calculated by Miner's rule, a good agreement was observed between constant and variable fatigue loading results. The characteristic curve obtained for friction stir welds is higher than the International Institute of Welding (IIW) fatigue class for fusion welds with full‐penetration both‐sided butt joints.

Originality/value

No data are available concerning fatigue behaviour under variable amplitude loading for friction stir welds of aluminium alloys. Furthermore, this paper analyses the fatigue strength of friction stir welds in AA6082‐T6 under constant and variable amplitude loading in order to verify the validity of Miner's rule for this specific welding process. A comparison between characteristic fatigue curves, using IIW fatigue classes (FAT), is also performed.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 315