Search results

1 – 10 of 24
Article
Publication date: 27 March 2024

Xiaomei Liu, Bin Ma, Meina Gao and Lin Chen

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey…

16

Abstract

Purpose

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey models can't catch the time-varying trend well.

Design/methodology/approach

The proposed model couples Fourier series and linear time-varying terms as the grey action, to describe the characteristics of variable amplitude and seasonality. The truncated Fourier order N is preselected from the alternative order set by Nyquist-Shannon sampling theorem and the principle of simplicity, then the optimal Fourier order is determined by hold-out method to improve the robustness of the proposed model. Initial value correction and the multiple transformation are also studied to improve the precision.

Findings

The new model has a broader applicability range as a result of the new grey action, attaining higher fitting and forecasting accuracy. The numerical experiment of a generated monthly time series indicates the proposed model can accurately fit the variable amplitude seasonal sequence, in which the mean absolute percentage error (MAPE) is only 0.01%, and the complex simulations based on Monte-Carlo method testify the validity of the proposed model. The results of monthly electricity consumption in China's primary industry, demonstrate the proposed model catches the time-varying trend and has good performances, where MAPEF and MAPET are below 5%. Moreover, the proposed TVGFM(1,1,N) model is superior to the benchmark models, grey polynomial model (GMP(1,1,N)), grey Fourier model (GFM(1,1,N)), seasonal grey model (SGM(1,1)), seasonal ARIMA model seasonal autoregressive integrated moving average model (SARIMA) and support vector regression (SVR).

Originality/value

The parameter estimates and forecasting of the new proposed TVGFM are studied, and the good fitting and forecasting accuracy of time-varying amplitude seasonal fluctuation series are testified by numerical simulations and a case study.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 28 March 2024

Chinthaka Niroshan Atapattu, Niluka Domingo and Monty Sutrisna

The current estimation practice in construction projects greatly needs upgrading, as there has been no improvement in the cost overrun issue over the past 70 years. The purpose of…

Abstract

Purpose

The current estimation practice in construction projects greatly needs upgrading, as there has been no improvement in the cost overrun issue over the past 70 years. The purpose of this research was to develop a new multiple regression analysis (MRA)-based model to forecast the final cost of road projects at the pre-design stage using data from 43 projects in New Zealand (NZ).

Design/methodology/approach

The research used the case study of 43 completed road projects in NZ. Document analysis was conducted to collect data, and statistical tests were used for model development and analysis.

Findings

Eight models were developed, and all models achieved the required F statistics and met the regression assumptions. The models’ mean absolute percentage error (MAPE) was between 21.25% and 22.77%. The model with the lowest MAPE comprised the road length and width, number of bridges, pavement area, cut and fill area, preliminary cost and cost indices change.

Research limitations/implications

The model is based on road projects in NZ. However, it was designed to be able to adapt to other contexts. The findings suggest that the model can be used to improve traditional conceptual estimating methods. Past project data is often stored by the project team but rarely used for analysing and forecasting purposes. This research emphasises that past data can be effectively used to predict the project cost at the pre-design stage with limited information.

Originality/value

No research was conducted to adopt cost modelling techniques into the conceptual estimation practice in the NZ construction industry.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Open Access
Article
Publication date: 9 November 2023

Abdulmohsen S. Almohsen, Naif M. Alsanabani, Abdullah M. Alsugair and Khalid S. Al-Gahtani

The variance between the winning bid and the owner's estimated cost (OEC) is one of the construction management risks in the pre-tendering phase. The study aims to enhance the…

Abstract

Purpose

The variance between the winning bid and the owner's estimated cost (OEC) is one of the construction management risks in the pre-tendering phase. The study aims to enhance the quality of the owner's estimation for predicting precisely the contract cost at the pre-tendering phase and avoiding future issues that arise through the construction phase.

Design/methodology/approach

This paper integrated artificial neural networks (ANN), deep neural networks (DNN) and time series (TS) techniques to estimate the ratio of a low bid to the OEC (R) for different size contracts and three types of contracts (building, electric and mechanic) accurately based on 94 contracts from King Saud University. The ANN and DNN models were evaluated using mean absolute percentage error (MAPE), mean sum square error (MSSE) and root mean sums square error (RMSSE).

Findings

The main finding is that the ANN provides high accuracy with MAPE, MSSE and RMSSE a 2.94%, 0.0015 and 0.039, respectively. The DNN's precision was high, with an RMSSE of 0.15 on average.

Practical implications

The owner and consultant are expected to use the study's findings to create more accuracy of the owner's estimate and decrease the difference between the owner's estimate and the lowest submitted offer for better decision-making.

Originality/value

This study fills the knowledge gap by developing an ANN model to handle missing TS data and forecasting the difference between a low bid and an OEC at the pre-tendering phase.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 April 2024

Tulsi Pawan Fowdur and Ashven Sanghan

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical…

Abstract

Purpose

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical appliance and transfer it securely to a local server for energy analytics such as forecasting.

Design/methodology/approach

The data capture system is composed of two current transformer (CT) sensors connected to two different electrical appliances. The CT sensors send the power readings to two Arduino microcontrollers which in turn connect to a Raspberry-Pi for aggregating the data. Blockchain is then enabled onto the Raspberry-Pi through a Java API so that the data are transmitted securely to a server. The server provides real-time visualization of the data as well as prediction using the multi-layer perceptron (MLP) and long short term memory (LSTM) algorithms.

Findings

The results for the blockchain analysis demonstrate that when the data readings are transmitted in smaller blocks, the security is much greater as compared with blocks of larger size. To assess the accuracy of the prediction algorithms data were collected for a 20 min interval to train the model and the algorithms were evaluated using the sliding window approach. The mean average percentage error (MAPE) was used to assess the accuracy of the algorithms and a MAPE of 1.62% and 1.99% was obtained for the LSTM and MLP algorithms, respectively.

Originality/value

A detailed performance analysis of the blockchain-based transmission model using time complexity, throughput and latency as well as energy forecasting has been performed.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 November 2023

Flavian Emmanuel Sapnken, Mohammed Hamaidi, Mohammad M. Hamed, Abdelhamid Issa Hassane and Jean Gaston Tamba

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic…

44

Abstract

Purpose

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).

Design/methodology/approach

Specifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.

Findings

Results show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.

Originality/value

These interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 6 February 2024

Liangshuai Li and Dang Luo

The damping accumulated discrete MGM(1, m) power model is proposed for the problem of forecasting the share of agricultural output value and the share of employment in China.

Abstract

Purpose

The damping accumulated discrete MGM(1, m) power model is proposed for the problem of forecasting the share of agricultural output value and the share of employment in China.

Design/methodology/approach

In this study, the damping accumulated discrete MGM(1, m) power model was developed based on the idea of discrete modelling by introducing a damping accumulated generating operator and power index. The new model can better identify the non-linear characteristics existing between different factors in the multivariate system and can accurately describe and forecast the trend of changes between data series and each of them.

Findings

The validity and rationality of the new model are verified through numerical experiment. It is forecasted that in 2023, the share of agricultural output value in China will be 7.14% and the share of agricultural employment will be 21.98%, with an overall decreasing trend.

Practical implications

The simultaneous decline in the share of agricultural output value and the share of employment is a common feature of countries that have achieved agricultural modernisation. Accurate forecasts of the share of agricultural output value and the share of employment can provide an important scientific basis for formulating appropriate agricultural development targets and policies in China.

Originality/value

The new model proposed in this study fully considers the importance of new information and has higher stability. The differential evolutionary algorithm was used to optimise the model parameters.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 25 March 2024

Zhixue Liao, Xinyu Gou, Qiang Wei and Zhibin Xing

Online reviews serve as valuable sources of information, reflecting tourists’ attentions, preferences and sentiments. However, although the existing research has demonstrated that…

Abstract

Purpose

Online reviews serve as valuable sources of information, reflecting tourists’ attentions, preferences and sentiments. However, although the existing research has demonstrated that incorporating online review data can enhance the performance of tourism demand forecasting models, the reliability of online review data and consumers’ decision-making process have not been given adequate attention. To address the aforementioned problem, the purpose of this study is to forecast tourism demand using online review data derived from the analysis of review helpfulness.

Design/methodology/approach

The authors propose a novel “identification-first, forecasting-second” framework. This framework prioritizes the identification of helpful reviews through a comprehensive analysis of review helpfulness, followed by the integration of helpful online review data into the forecasting system. Using the SARIMAX model with helpful online review data sourced from TripAdvisor, this study forecasts tourist arrivals in Hong Kong during the period from August 2012 to June 2019. The SNAÏVE/SARIMA model was used as the benchmark model. Additionally, artificial intelligence models including long short-term memory, back propagation neural network, extreme learning machine and random forest models were used to assess the robustness of the results.

Findings

The results demonstrate that online review data are subject to noise and bias, which can adversely affect the accuracy of predictions when used directly. However, by identifying helpful online reviews beforehand and incorporating them into the forecasting process, a notable enhancement in predictive performance can be realized.

Originality/value

First, to the best of the authors’ knowledge, this study is one of the first to focus on the data issue of online reviews on tourism arrivals forecasting. Second, this study pioneers the integration of the consumer decision-making process into the domain of tourism demand forecasting, marking one of the earliest endeavors in this area. Third, this study makes a novel attempt to identify helpful online reviews based on reviews helpfulness analysis.

Details

Nankai Business Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8749

Keywords

Open Access
Article
Publication date: 23 January 2024

Luís Jacques de Sousa, João Poças Martins, Luís Sanhudo and João Santos Baptista

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase…

Abstract

Purpose

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase, construction companies must assess the scope of each task and map the client’s expectations to an internal database of tasks, resources and costs. Quantity surveyors carry out this assessment manually with little to no computer aid, within very austere time constraints, even though these results determine the company’s bid quality and are contractually binding.

Design/methodology/approach

This paper seeks to compile applications of machine learning (ML) and natural language processing in the architectural engineering and construction sector to find which methodologies can assist this assessment. The paper carries out a systematic literature review, following the preferred reporting items for systematic reviews and meta-analyses guidelines, to survey the main scientific contributions within the topic of text classification (TC) for budgeting in construction.

Findings

This work concludes that it is necessary to develop data sets that represent the variety of tasks in construction, achieve higher accuracy algorithms, widen the scope of their application and reduce the need for expert validation of the results. Although full automation is not within reach in the short term, TC algorithms can provide helpful support tools.

Originality/value

Given the increasing interest in ML for construction and recent developments, the findings disclosed in this paper contribute to the body of knowledge, provide a more automated perspective on budgeting in construction and break ground for further implementation of text-based ML in budgeting for construction.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 12 January 2024

Patrik Jonsson, Johan Öhlin, Hafez Shurrab, Johan Bystedt, Azam Sheikh Muhammad and Vilhelm Verendel

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Abstract

Purpose

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Design/methodology/approach

A mixed-method case approach is applied. Explanatory variables are identified from the literature and explored in a qualitative analysis at an automotive original equipment manufacturer. Using logistic regression and random forest classification models, quantitative data (historical schedule transactions and internal data) enables the testing of the predictive difference of variables under various planning horizons and inaccuracy levels.

Findings

The effects on delivery schedule inaccuracies are contingent on a decoupling point, and a variable may have a combined amplifying (complexity generating) and stabilizing (complexity absorbing) moderating effect. Product complexity variables are significant regardless of the time horizon, and the item’s order life cycle is a significant variable with predictive differences that vary. Decoupling management is identified as a mechanism for generating complexity absorption capabilities contributing to delivery schedule accuracy.

Practical implications

The findings provide guidelines for exploring and finding patterns in specific variables to improve material delivery schedule inaccuracies and input into predictive forecasting models.

Originality/value

The findings contribute to explaining material delivery schedule variations, identifying potential root causes and moderators, empirically testing and validating effects and conceptualizing features that cause and moderate inaccuracies in relation to decoupling management and complexity theory literature?

Details

International Journal of Operations & Production Management, vol. 44 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 28 March 2024

Y. Sun

In recent years, there has been growing interest in the use of stainless steel (SS) in reinforced concrete (RC) structures due to its distinctive corrosion resistance and…

Abstract

Purpose

In recent years, there has been growing interest in the use of stainless steel (SS) in reinforced concrete (RC) structures due to its distinctive corrosion resistance and excellent mechanical properties. To ensure effective synergy between SS and concrete, it is necessary to develop a time-saving approach to accurately determine the ultimate bond strength τu between the two materials in RC structures.

Design/methodology/approach

Three robust machine learning (ML) models, including support vector regression (SVR), random forest (RF) and extreme gradient boosting (XGBoost), are employed to predict τu between ribbed SS and concrete. Model hyperparameters are fine-tuned using Bayesian optimization (BO) with 10-fold cross-validation. The interpretable techniques including partial dependence plots (PDPs) and Shapley additive explanation (SHAP) are also utilized to figure out the relationship between input features and output for the best model.

Findings

Among the three ML models, BO-XGBoost exhibits the strongest generalization and highest accuracy in estimating τu. According to SHAP value-based feature importance, compressive strength of concrete fc emerges as the most prominent feature, followed by concrete cover thickness c, while the embedment length to diameter ratio l/d, and the diameter d for SS are deemed less important features. Properly increasing c and fc can enhance τu between ribbed SS and concrete.

Originality/value

An online graphical user interface (GUI) has been developed based on BO-XGBoost to estimate τu. This tool can be utilized in structural design of RC structures with ribbed SS as reinforcement.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 24