Search results

1 – 10 of 219
Article
Publication date: 20 February 2020

Daniel Paul Thanaraj, Anand N. and Prince Arulraj

The purpose of this study is to investigate the effect of standard fire on the strength and microstructure properties of concrete with different strength grades.

Abstract

Purpose

The purpose of this study is to investigate the effect of standard fire on the strength and microstructure properties of concrete with different strength grades.

Design/methodology/approach

Different strength grades of concrete used for the investigation are M20, M30, M40 and M50. An electrical bogie hearth furnace was developed to simulate the International Standards Organization 834 standard fire curve.Concrete samples were subjected to high temperatures of 925, 1,029, 1,090 and 1,133°C for the duration of 1, 2, 3 and 4 h, respectively, as per standard fire curve. Compressive strength, tensile strength, thermal crack pattern and spalling of heated concrete specimens were evaluated by experimental investigation. Scanning electron microscopy and thermo-gravimetric analysis were performed to investigate the microstructure properties of heated concrete specimens.

Findings

Test results indicated reduction in the strength and changes in the microstructure properties of concrete exposed to elevated temperature. The degree of weight and the strength loss were found to be higher for concrete with higher grades. An empirical relation is proposed to determine the residual strength of concrete with different strength grade using regression analysis.

Social implications

Results of this research will be useful for the design engineers to understand the behavior of concrete exposed to elevated temperature as per standard fire.

Originality/value

When concrete is exposed to elevated temperature, its internal microstructure changes, thereby strength and durability of concrete deteriorates. The performance of concrete with different strength grade exposed to standard fire is well understood. This research’s findings will be useful for the designers to understand more about fire resistance of concrete. A simple relationship is proposed to determine the residual strength of concrete exposed to various durations of heating.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 June 2021

Niragi Dave, Ramesh Guduru, Anil Kumar Misra and Anil Kumar Sharma

The consumption of supplementary cementitious materials (SCMs) has increased enormously in the construction industry. These SCMs are often waste materials or industrial…

Abstract

Purpose

The consumption of supplementary cementitious materials (SCMs) has increased enormously in the construction industry. These SCMs are often waste materials or industrial by-products. This study aims to investigate the bond strength using reinforcing bars in Normal Strength Concrete (M20 grade) and High Strength Concrete (M40 grade), developed using SCMs and data was compared with concrete prepared with ordinary portland cement (OPC). The findings of the study will help in reducing the dependency on OPC and promote the utilization of waste materials in Construction.

Design/methodology/approach

In the present study, the bond behavior between the steel bars and the concrete was investigated in controlled, binary and quaternary concretes of M20 and M40 grades. Following the conventional procedures, samples were prepared and mechanical tests conducted (as per IS:2770–1 code for M20 and M40 grade concrete structures), which showed an improvement in the bond strength depending on the extent of overall calcium and silica content in these composite mixtures, and thus reflected the importance of vigilant utilization of used industrial waste in the OPC as a replacement without exceeding silica content beyond certain percentages for enhanced structural properties.

Findings

Experimental evaluation of bond behavior results showed a brittle nature for the controlled (OPC) concrete mixtures. While binary and quaternary concrete was able to resist the load-carrying capacity under large deformations and prevented the split cracking and disintegration of the concretes. Among different variations in the chemistry, for both M20 and M40 grades, the maximum bond strengths were observed for 10% Metakaolin + 10% Silica Fume + 30% Fly Ash + 50% OPC composition and this could be attributed to the fineness of the additives, better packing and enhanced calcium silicate hydrate (C-S-H).

Originality/value

Quaternary concrete may be a future option in place of OPC concrete. Very limited data is available related to the bond strength of quaternary concrete. Experimental analysis on quaternary concrete shows that its use in construction can reduce both construction cost and a burden on natural raw materials used to make OPC.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 7 September 2010

Andrzej Tomczyk

The main targets of the work are analysis and simulation of flying laboratory performance. In particular, synthesis of control system for handling qualities change and…

Abstract

Purpose

The main targets of the work are analysis and simulation of flying laboratory performance. In particular, synthesis of control system for handling qualities change and evaluation in flight are taken into consideration.

Design/methodology/approach

Modification of handling qualities is obtained by applying indirect flight control system (FBW). The properties of the optimal controller are calculated through the indirect (implicit) model‐following method. In particular, the modified version based on the computer simulations is used.

Findings

Calculation and simulation concern the synthesis of desired handling qualities of the general aviation aircraft PZL‐M20 “Mewa” equipped with indirect (FBW) experimental flight control system. Results of the simulation show that the flying laboratory has the same properties as modeled aircraft, and it is possible to say that handling properties concern attitude orientation of the experimental aircraft is similar to modeled commuter aircraft.

Practical implications

The result of research can be implemented on a project of the flying laboratory based on general aviation aircraft PZL M20 “Mewa”.

Originality/value

The paper presents the practical approach for synthesis of the “Simplified total in flight simulator” performance which can be used for analysis of handling qualities of general aviation aircraft equipped with FBW. Research of this type focuses on military and transport airplanes however, there are no published works in the area of small aircraft so far.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 27 July 2021

Mervin Ealiyas Mathews, Anand N, Diana Andrushia A, Tattukolla Kiran and Khalifa Al-Jabri

Building elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is…

Abstract

Purpose

Building elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used in construction due to its ability to flow and pass through congested reinforcement and fill the required areas easily without compaction. The aim of the research work is to examine the flexural behavior of SCC subjected to elevated temperature. This research work examines the effect of natural air cooling (AC) and water cooling (WC) on flexural behavior of M20, M30, M40 and M50 grade fire-affected retro-fitted SCC. The results of the investigation will enable the designers to choose the appropriate repair technique for improving the service life of structures.

Design/methodology/approach

In this study, an attempt has been made to evaluate the flexural behavior of fire exposed reinforced SCC beams retrofitted with laminates of carbon fiber reinforced polymer (CFRP), basalt fiber reinforced polymer (BFRP) and glass fiber reinforced polymer (GFRP). Beam specimens were cast with M20, M30, M40 and M50 grades of SCC and heated to 925ºC using an electrical furnace for 60 min duration following ISO 834 standard fire curve. The heated SCC beams were cooled by either natural air or water spraying.

Findings

The reduction in the ultimate load carrying capacity of heated beams was about 42% and 55% for M50 grade specimens that were cooled by air and water, respectively, in comparison with the reference specimens. The increase in the ultimate load was 54%, 38% and 27% for the specimens retrofitted with CFRP, BFRP and GFRP, respectively, compared with the fire-affected specimens cooled by natural air. Water-cooled specimens had shown higher level of damage than the air-cooled specimens. The specimens wrapped with carbon fiber could able to improve the flexural strength than basalt and glass fiber wrapping.

Originality/value

SCC, being a high performance concrete, is essential to evaluate the performance under fire conditions. This research work provides the flexural behavior and physical characteristics of SCC subjected to elevated temperature as per ISO rate of heating. In addition attempt has been made to enhance the flexural strength of fire-exposed SCC with wrapping using different fibers. The experimental data will enable the engineers to choose the appropriate material for retrofitting.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 February 2021

Alwyn Varghese, Anand N., Diana Andrushia and Prince Arulraj

Aim of this research work is to examine the stress–strain behavior and modulus of elasticity of fiber-reinforced concrete (FRC) exposed to elevated temperature. The…

Abstract

Purpose

Aim of this research work is to examine the stress–strain behavior and modulus of elasticity of fiber-reinforced concrete (FRC) exposed to elevated temperature. The purpose of this paper is to study the effect of standard fire exposure on the mechanical and microstructure characteristics of concrete specimens with different strength grade.

Design/methodology/approach

An electrical bogie hearth furnace was developed to simulate the ISO 834 standard fire curve. Specimens were exposed to high temperatures of 821°C, 925°C and 986°C for the duration of 30, 60 and 90 min, respectively, as per standard fire curve. Peak stress, peak strain, modulus of elasticity and damage level of heated concrete specimens were evaluated by experimental investigation. SEM-based microstructure investigation has been carried out to analyze the microstructure characteristics of heated concrete specimens.

Findings

The results revealed that carbon fiber reinforced concrete was found to be better than the FRC made with other fibers on improving the modulus of elasticity of concrete. An empirical relationship has been established to predict the modulus of elasticity of temperature exposed specimens with different type of fiber and grade of concrete. In comparison with low melting point fibers, high melting point fibers exhibited higher modulus of elasticity under all tested conditions. Surface damage and porosity level of concrete with carbon and basalt fibers were found to be lower than other FRC.

Originality/value

Empirical relationship was developed to determine the modulus of elasticity of concrete exposed to elevate temperature, and this will be useful for concrete design applications. This research work may be useful for finding the residual compressive strength of concrete exposed to elevate temperature. So that it will be helpful to identify the suitable repair/retrofitting technique for reinforced concrete elements.

Details

World Journal of Engineering, vol. 18 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 13 November 2007

248

Abstract

Details

Structural Survey, vol. 25 no. 5
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 1 March 1989

K. Allcock

Examines the economic effects of the channel tunnel link on twotowns in Kent most likely to benefit from improved communications:Maidstone and Ashford. Concludes that both…

Abstract

Examines the economic effects of the channel tunnel link on two towns in Kent most likely to benefit from improved communications: Maidstone and Ashford. Concludes that both towns stand to gain economically as confidence in the tunnel grows and Kent becomes an accepted business location, mainly because of the strategic advantages of their location between the M25 and the continent.

Details

Property Management, vol. 7 no. 3
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 1 December 2004

Andrzej Tomczyk

In this paper, the suboptimal algorithm of adaptive control system is presented, which is specially adjusted for automatic flight control systems of general aviation and…

1420

Abstract

In this paper, the suboptimal algorithm of adaptive control system is presented, which is specially adjusted for automatic flight control systems of general aviation and commuter aircraft, and unmanned aircraft (UMA) that conduct flights in atmospheric turbulence. At first, the method could be applied for correcting these changes in flight dynamics parameters, which cannot be compensated with the aid of an open adaptation loop. At the same time, full identification of aircraft model in real time is not required. This method is based on the estimation of most typical parameters of the aircraft mathematical model, which are most closely related to parameters, which are unmeasurable during flight, like aircraft real mass and position of center of gravity. The structure of an adaptation algorithm of aircraft flight control laws is based on the expert knowledge in the field of flight dynamics and is the result of optimization calculations. The examples which show attaining better flight comfort of the PZL M20, “Mewa” general aviation aircraft and quality improvement of the UMA, “Vector” pitch angle automatic control, have been presented.

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 June 2015

Lucy Bull, Eric J. Palmiere, Richard P. Thackray, Ian W. Burgess and Buick Davison

In structural fire engineering, the importance of bolt assemblies is often overlooked. Connection design uses the temperature-dependent bolt strength-reduction factors…

Abstract

In structural fire engineering, the importance of bolt assemblies is often overlooked. Connection design uses the temperature-dependent bolt strength-reduction factors prescribed in Eurocode 3, despite the existence of two distinct failure modes under tension; necking of the bolt shank, and thread-stripping. While literature exists to predict failure modes at ambient temperature, there is no method for failure mode prediction for elevated temperatures where ductility is critical to avoid collapse. Galvanised M20 structural bolt assemblies and bolt material from a single batch have been tested under tension at a range of temperatures and strain-rates typical of those experienced in fire. Turned-down bolt test data produced stress-strain curves characteristic of different microstructures at ambient temperature, despite a tempered-martensitic microstructure being specified in the standards. The failure modes of bolt assemblies were found to be dependent on the as-received microstructure at ambient temperature. At elevated temperatures, however, only thread-stripping was observed.

Details

Journal of Structural Fire Engineering, vol. 6 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 15 February 2011

G. Jayasree, M. Lakshmipathy and S. Santhanaselvi

Concrete is subjected to elevated temperature for short duration, long duration and cyclic heating on many occasions. The dramatic fire accidents/incidents have renewed…

Abstract

Concrete is subjected to elevated temperature for short duration, long duration and cyclic heating on many occasions. The dramatic fire accidents/incidents have renewed the interest in the area of research on concrete subjected to elevated temperature. From the literature review it is found that the experimental data which simulate the conditions of structural elements in stressed conditions when exposed to fire are scarce. The work presents a study on the residual characteristics of R.C. beams subjected to elevated temperature under unstressed and stressed conditions. The R.C beams were of size 120mm×120mm×1500mm and designed with single and double reinforcement and referenced as Type I and Type II respectively. M20 grade of concrete was used in casting the beams. The temperatures were kept as 100°C, 200°C, 300°C, 400°C and 500°C and the duration of exposure was 4 hours. The specimens were cooled in air and the residual properties were tested by conducting two point bending test on R.C. beams and their behavioral parameters were studied in comparison with beams tested under normal (room) temperature conditions. The extent of damage suffered measured by the damage factor was about 32 % for Type I beams and about 48% for the Type II beams tested under unstressed test condition when exposed to 500°C; whereas it is to an extent of 33% for Type I beams and 49% for Type II beams in stressed test condition for the same exposed temperature. The degradation in initial stiffness was nearly 57% and 49% for Type I and Type II beams in unstressed test and 54% and 73% respectively for stressed test when exposed to 500°C. The degradation in stiffness at 50% of ultimate load was nearly 36% and 35% for Type I and Type II beams in unstressed test and 49% and 76.6% respectively for stressed test when exposed to 500°C. The ultimate load of R.C. beams tested in stressed condition were marginally 5% lower than the beams under unstressed test condition.

Details

Journal of Structural Fire Engineering, vol. 2 no. 1
Type: Research Article
ISSN: 2040-2317

1 – 10 of 219