Search results

1 – 10 of 15
To view the access options for this content please click here
Article
Publication date: 4 April 2016

M.V.A. Raju Bahubalendruni, B.B.V.L. Deepak and Bibhuti Bhusan Biswal

The purpose of this study is to develop an intelligent methodology to find out an optimal feasible assembly sequence while considering the assembly predicates.

Abstract

Purpose

The purpose of this study is to develop an intelligent methodology to find out an optimal feasible assembly sequence while considering the assembly predicates.

Design/methodology/approach

This proposed study is carried out by using two artificial immune system-based models, namely, Bone Marrow Model and Negative Selection Algorithms, to achieve the following objectives: to obtain the possible number of assembly sequences; to obtain the feasible assembly sequences while considering different assembly predicates; and to obtain an optimal feasible assembly sequence.

Findings

Proposed bone-marrow model determines the possible assembly sequences to ease the intricacy of the problem formulation. Further evaluation has been carried out through negative-selection censoring and monitoring models. These developed models reduce the overall computational time to determine the optimal feasible assembly sequence.

Originality/value

In this paper, the novel and efficient strategies based on artificial immune system have been developed and proposed to obtain all valid assembly sequences and optimized assembly sequence for a given assembled product using assembly attributes. The introduced methodology has proven its effectiveness in achieving optimal assembly sequence with less computational time.

Details

Assembly Automation, vol. 36 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 9 April 2018

M.V.A. Raju Bahubalendruni

Three-dimensional exploded view is a schematic representation of a product anticipated for performing assembly or disassembly operations. Exploded view is found in many…

Abstract

Purpose

Three-dimensional exploded view is a schematic representation of a product anticipated for performing assembly or disassembly operations. Exploded view is found in many applications, such as product instructional materials, repair and maintenance handbooks. This paper aims to propose an efficient exploded view generation technique based on assembly coherence data and disassembly feasibility testing, and illustrate it on various configurations of assemblies.

Design/methodology/approach

The proposed methodology extracts the assembly contact information between the constituent parts and geometric feasibility relation matrix based on the common mating surface of part pairs in liaison and assembly collision detection. These data are further used for exploded view generation.

Findings

The proposed exploded view generation method determines the possible disassembly sequences and simplifies the procedure in determining the number of disassembly levels.

Research limitations/implications

The procedure consumes more time for the products with large number of part counts having numerous non-ruled surfaces.

Originality/value

The proposed method is effectively used to solve assemblies, where parts are assembled through oblique orientations. The method is found successful in generating exploded view for products with large number of parts through collision-free paths.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 26 August 2020

Anil Kumar Gulivindala, M.V.A. Raju Bahubalendruni, S.S. Vara Prasad Varupala and Sankaranarayanasamy K.

Parallel assembly sequence planning (PASP) reduces the overall assembly effort and time at the product development stage. Methodological difficulties at framework…

Abstract

Purpose

Parallel assembly sequence planning (PASP) reduces the overall assembly effort and time at the product development stage. Methodological difficulties at framework development and computational issues at their implementation made the PASP complex to achieve. This paper aims to propose a novel stability concept for subassembly detection to minimize the complexities in PASP.

Design/methodology/approach

In this research, a heuristic method is developed to identify, represent and implement the stability predicate to perform subassembly detection and assembly sequence planning (ASP) at the further stages. Stability is organized into static, dynamic, enriched and no stability between the mating assembly parts. The combination of parts that possesses higher fitness is promoted to formulate the final solution about PASP.

Findings

The results obtained by applying the proposed concept on complex configurations revealed that stability predicate plays a dominant role in valid subassembly detection and final sequence generation further.

Originality/value

The value of the presented study lies in the three types of stability conditions and effective integration to existed ASP method. Unlike the existed heuristics in subassembly detection, the proposed concept identifies the parallel subassemblies during ASP.

To view the access options for this content please click here
Article
Publication date: 12 June 2017

B.B.V.L. Deepak and M.V.A. Raju Bahubalendruni

The purpose of this research work is helpful for recognizing the crushing characteristics of a single toggle jaw crusher during its operation. It is useful for designing a

Abstract

Purpose

The purpose of this research work is helpful for recognizing the crushing characteristics of a single toggle jaw crusher during its operation. It is useful for designing a new prototype of this kind of machine with optimal dimensions of the jaw crusher frame and the crushing chamber.

Design/methodology/approach

The efficiency of the jaw crusher primarily depends on the kinematic characteristics of the swing jaw plate during the crushing process. The present research work deals with the kinematic analysis of the swing jaw plate of a single toggle jaw crusher.

Findings

During the analysis, the system is considered as a four-bar crank rocker mechanism. The force distribution is analyzed based on the results obtained from the motion analysis of the swing jaw plate.

Originality/value

The movement of the swing jaw plate is explained in detail while the machine is in operation. Kinematic analysis of the liner has been performed by considering some points along the swing jaw plate. The results obtained from the movement analysis of the swing jaw plate force distribution along the liner are analyzed. From this analysis, the chamber geometry can be optimized according to the requirement for the crushing motion of different zones in the crushing chamber.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 26 March 2019

M.V.A. Raju Bahubalendruni, Anil Gulivindala, Manish Kumar, Bibhuti Bhusan Biswal and Lakshumu Naidu Annepu

The purpose of this paper is to develop an efficient hybrid method that can collectively address assembly sequence generation (ASG) and exploded view generation (EVG…

Abstract

Purpose

The purpose of this paper is to develop an efficient hybrid method that can collectively address assembly sequence generation (ASG) and exploded view generation (EVG) problem effectively. ASG is an act of finding feasible collision free movement of components of a mechanical product in accordance with the assembly design. Although the execution of ASG is complex and time-consuming in calculation, it is highly essential for efficient manufacturing process. Because of numerous limitations of the ASG algorithms, a definite method is still unavailable in the computer-aided design (CAD) software, and therefore the explosion of the product is not found to be in accordance with any feasible disassembly sequence (disassembly sequence is reverse progression of assembly sequence). The existing EVG algorithms in the CAD software result in visualization of the entire constituent parts of the product over single screen without taking into consideration the feasible order of assembly operations; thus, it becomes necessary to formulate an algorithm which effectively solves ASG and EVG problem in conjugation. This requirement has also been documented as standard in the “General Information Concerning Patents: 1.84 Standards for drawings” in the United States Patent and Trademark office (2005) which states that the exploded view created for any product should show the relationship or order of assembly of various parts that are permissible.

Design/methodology/approach

In this paper, a unique ASG method has been proposed and is further extended for EVG. The ASG follows a deterministic approach to avoid redundant data collection and calculation. The proposed method is effectively applied on products which require such feasible paths of disassembly other than canonical directions.

Findings

The method is capable of organizing the assembly operations as linear or parallel progression of assembly such that the assembly task is completed in minimum number of stages. This result is further taken for EVG and is found to be proven effective.

Originality/value

Assembly sequence planning (ASP) is performed most of the times considering the geometric feasibility along canonical axes without considering parallel possibility of assembly operations. In this paper, the proposed method is robust to address this issue. Exploded view generation considering feasible ASP is also one of the novel approaches illustrated in this paper.

To view the access options for this content please click here
Article
Publication date: 7 August 2017

B.B.V.L. Deepak and M.V.A. Raju Bahubalendruni

The purpose of this paper is to study the path-planning problem of an unmanned ground vehicle (UGV) in a predefined, structured environment.

Abstract

Purpose

The purpose of this paper is to study the path-planning problem of an unmanned ground vehicle (UGV) in a predefined, structured environment.

Design/methodology/approach

In this investigation, the environment chosen was the roadmap of the National Institute of Technology, Rourkela, obtained from Google maps as reference. An UGV is developed and programmed so as to move autonomously from an indicated source location to the defined destination in the given map following the most optimal path.

Findings

An algorithm based on linear search is implemented to the autonomous robot to generate shortest paths in the environment. The developed algorithm is verified with the simulations as well as in experimental environments.

Originality/value

Unlike the past methodologies, the current investigation deals with the global path-planning strategy as the line following mechanism. Moreover, the proposed technique has been implemented in a real-time environment.

Details

World Journal of Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 6 February 2017

B.B.V.L. Deepak, Raju M.V.A. Bahubalendruni, Ch A. Rao and Jalumuru Nalini

This paper aims to automate the welding operation that motion control, sensor integration and coordination with the welding power source. Therefore, there is a need for…

Abstract

Purpose

This paper aims to automate the welding operation that motion control, sensor integration and coordination with the welding power source. Therefore, there is a need for sophisticated technologies to control precisely the process in terms of positioning the welding torch, and controlling the welding parameters through the use of correct devices which are aided by appropriate control tools and techniques.

Design/methodology/approach

A new seam tracking methodology, named sewing technique, has been introduced for the welded joints available in computer-aided design (CAD) environment. This methodology gives the seam path by drawing a line through the adjacent centroids of curve fitted in the weld joint volume. Obtained geometric path and kinematic constraints are given as input to the modeled robot for performing welding operation followed by desired trajectory.

Findings

In this investigation, a novel and efficient weld seam technique has been developed to produce uniform welded joints. The key feature of this approach is that the initial and end positions of the weld seams can be obtained easily. Because of this, the robot can be controlled flexibly during welding operation.

Originality/value

This investigation deals with the development of an automated seam tracking methodology for the welded joints available in CAD environment. Validation of the developed methodology has been done through simulation results while performing welding operations for different weld profiles.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 4 July 2016

B.B.V.L. Deepak, M.V.A. Raju Bahubalendruni and B.B. Biswal

The purpose of this paper is to describe the reviews of past research work on various in-pipe robotic systems and their operations. This investigation has been focussed on…

Abstract

Purpose

The purpose of this paper is to describe the reviews of past research work on various in-pipe robotic systems and their operations. This investigation has been focussed on the implemented methodologies for performing in-pipe cleaning and inspection tasks.

Design/methodology/approach

This work has been concentrated on review of various sensors used in robots to perform in-pipes inspection operation for determining flaws/cracks, corrosion-affected areas, blocks and coated paint thickness. Various actuators like DC motors, servo motors, pneumatic operated and hydraulic operated are discussed in this review analysis to control the motion of various mechanical components of the robot.

Findings

In the current analysis, categorisation of various pipe cleaning robots according to their mechanical structure has been addressed. A lot of information has been gathered regarding the control of in-pipe robots for performing inspection and cleaning tasks.

Originality/value

In this paper, various in-pipe cleaning and inspection techniques have been studied. Necessary information provided regarding different types of in-pipe robots like PIG, wall-pressed, walking, wheel and inchworm. This investigation provides a through literature on various types of sensors like ultrasonic, magnetic, touch, light amplification by stimulated emission of radiation, X-ray, etc., that have been used for inspection and detection of flaws in the pipe.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

To view the access options for this content please click here
Article
Publication date: 7 September 2015

M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, Manish Kumar and Radharani Nayak

The purpose of this paper is to find out the significant influence of assembly predicate consideration on optimal assembly sequence generation (ASG) in terms of search…

Abstract

Purpose

The purpose of this paper is to find out the significant influence of assembly predicate consideration on optimal assembly sequence generation (ASG) in terms of search space, computational time and possibility of resulting practically not feasible assembly sequences. An appropriate assembly sequence results in minimal lead time and low cost of assembly. ASG is a complex combinatorial optimisation problem which deals with several assembly predicates to result an optimal assembly sequence. The consideration of each assembly predicate highly influences the search space and thereby computational time to achieve valid assembly sequence. Often, the ignoring an assembly predicate leads to inappropriate assembly sequence, which may not be physically possible, sometimes predicate assumption drastic ally raises the search space with high computational time.

Design/methodology/approach

The influence of assuming and considering different assembly predicates on optimal assembly sequence generation have been clearly illustrated with examples using part concatenation method.

Findings

The presence of physical attachments and type of assembly liaisons decide the consideration of assembly predicate to reduce the complexity of the problem formulation and overall computational time.

Originality/value

Most of the times, assembly predicates are ignored to reduce the computational time without considering their impact on the assembly sequence problem irrespective of assembly attributes. The current research proposes direction towards predicate considerations based on the assembly configurations for effective and efficient ASG.

To view the access options for this content please click here
Article
Publication date: 7 July 2020

Golak Bihari Mahanta, Deepak BBVL, Bibhuti B. Biswal and Amruta Rout

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design…

Abstract

Purpose

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable nature and its economic feasibility. So, the purpose of this paperis to design a suitable gripper with appropriate design parameters for better performance in the robotic production systems.

Design/methodology/approach

In this paper, an enhanced multi-objective ant lion algorithm is introduced to find the optimal geometric and design variables of a parallel gripper. The considered robotic gripper systems are evaluated by considering three objective functions while satisfying eight constraint equations. The beta distribution function is introduced for generating the initial random number at the initialization phase of the proposed algorithm as a replacement of uniform distribution function. A local search algorithm, namely, achievement scalarizing function with multi-criteria decision-making technique and beta distribution are used to enhance the existing optimizer to evaluate the optimal gripper design problem. In this study, the newly proposed enhanced optimizer to obtain the optimum design condition of the design variables is called enhanced multi-objective ant lion optimizer.

Findings

This study aims to obtain optimal design parameters of the parallel gripper with the help of the developed algorithms. The acquired results are investigated with the past research paper conducted in that field for comparison. It is observed that the suggested method to get the best gripper arrangement and variables of the parallel gripper mechanism outperform its counterparts. The effects of the design variables are needed to be studied for a better design approach concerning the objective functions, which is achieved by sensitivity analysis.

Practical implications

The developed gripper is feasible to use in the assembly operation, as well as in other pick and place operations in different industries.

Originality/value

In this study, the problem to find the optimum design parameter (i.e. geometric parameters such as length of the link and parallel gripper joint angles) is addressed as a multi-objective optimization. The obtained results from the execution of the algorithm are evaluated using the performance indicator algorithm and a sensitivity analysis is introduced to validate the effects of the design variables. The obtained optimal parameters are used to develop a gripper prototype, which will be used for the assembly process.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 15