Search results

11 – 20 of 593
Article
Publication date: 18 January 2016

Josep Farré-Lladós, Jasmina Casals-Terré, Jordi Voltas and Lars G. Westerberg

This paper aims to present a new methodology to manufacture micro-channels suitable for high operating pressures and micro particle image velocimetry (μPIV) measurements using a…

Abstract

Purpose

This paper aims to present a new methodology to manufacture micro-channels suitable for high operating pressures and micro particle image velocimetry (μPIV) measurements using a rapid-prototyping high-resolution 3D printer. This methodology can fabricate channels down to 250 μm and withstand pressures of up to 5 ± 0.2 MPa. The manufacturing times are much shorter than in soft lithography processes.

Design/methodology/approach

The novel manufacturing method developed takes advantage of the recently improved resolution in 3D printers to manufacture an rapid prototyping technique part that contains the hose connections and a micro-channel useful for microfluidics. A method to assemble one wall of the micro-channel using UV curable glue with a glass slide is presented – an operation required to prepare the channel for μPIV measurements. Once built, the micro-channel has been evaluated when working under pressure and the grease flow behavior in it has been measured using μPIV. Furthermore, the minimum achievable channels have been defined using a confocal microscopy study.

Findings

This technique is much faster than previous micro-manufacturing techniques where different steps were needed to obtain the micro-machined parts. However, due to current 3D printers ' resolutions (around 50 μm) and according to the experimental results, channels smaller than 250-μm2 cross-section should not be used to characterize fluid flow behaviors, as inaccuracies in the channel boundaries can deeply affect the fluid flow behavior.

Practical implications

The present methodology is developed due to the need to validate micro-channels using μPIV to lubricate critical components (bearings and gears) in wind turbines.

Originality/value

This novel micro-manufacturing technique overcomes current techniques, as it requires less manufacturing steps and therefore it is faster and with less associated costs to manufacture micro-channels down to 250-μm2 cross-section that can withstand pressures higher than 5 MPa that can be used to characterize microfluidic flow behavior using μPIV.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 November 2021

Chenfei Zhao, Jun Wang and Lini Lu

In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and…

Abstract

Purpose

In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and good precision in modern electronic printing. The purpose of this study is to solve the high cost of traditional printing and the pollution emissions of organic ink. It is necessary to develop a water-based conductive ink that is easily degradable and can be 3 D printed. A nano-silver ink printed circuit pattern with high precision, high conductivity and good mechanical properties is a promising strategy.

Design/methodology/approach

The researched nano-silver conductive ink is mainly composed of silver nanoparticles and resin. The effect of adding methyl cellulose on the ink was also explored. A simple 3 D circuit pattern was printed on photographic paper. The line width, line length, line thickness and conductivity of the printed circuit were tested. The influence of sintering temperature and sintering time on pattern resistivity was studied. The relationship between circuit pattern bending performance and electrical conductivity is analyzed.

Findings

The experimental results show that the ink has the characteristics of low silver content and good environmental protection effect. The printing feasibility of 3 D printing circuit patterns on paper substrates was confirmed. The best printing temperature is 160°C–180°C, and the best sintering time is 30 min. The circuit pattern can be folded 120°, and the cycle is folded more than 60 times. The minimum resistivity of the circuit pattern is 6.07 µΩ·cm. Methyl cellulose can control the viscosity of the ink. The mechanical properties of the pattern have been improved. The printing method of 3 D printing can significantly reduce the sintering time and temperature of the conductive ink. These findings may provide innovation for the flexible electronics industry and pave the way for alternatives to cost-effective solutions.

Originality/value

In this study, direct ink writing technology was used to print circuit patterns on paper substrates. This process is simple and convenient and can control the thickness of the ink layer. The ink material is nonpolluting to the environment. Nano-silver ink has suitable viscosity and pH value. It can meet the requirements of pneumatic 3 D printers. The method has the characteristics of simple process, fast forming, low cost and high environmental friendliness.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 October 2018

Fan Xu, Hesheng Wang, Weidong Chen and Jingchuan Wang

Soft robotics, regarded as a new research branch of robotics, has generated increasing interests in this decade and has demonstrated its outperformance in addressing safety issues…

Abstract

Purpose

Soft robotics, regarded as a new research branch of robotics, has generated increasing interests in this decade and has demonstrated its outperformance in addressing safety issues when cooperating with human beings. However, there is still lack of accurate close-loop control because of the difficulty in acquiring feedback information and accurately modeling the system, especially in interactive environments. To this end, this paper aims to improve the controllability of the soft robot working in specific underwater environment. The system dynamics, which takes complicated hydrodynamics into account, is solved using Kane’s method. The dynamics-based adaptive visual servoing controller is proposed to realize accurate sensorimotor control.

Design/methodology/approach

This paper presents an image-based visual servoing control scheme for a cable-driven soft robot with a fixed camera observing the motions. The intrinsic and extrinsic parameters of the camera can be adapted online so that tedious camera calibration work can be eliminated. It is acknowledged that kinematics-based control can be only applied into tasks in the free space and has limitation in accelerating the motion speed of robot arms. That is, one must consider the unneglectable interaction effects generated from the environment and objectives when operating soft robots in such interactive control tasks. To extend the application of soft robots into underwater environment, the study models system dynamics considering complicated hydrodynamic effects. With the pre-knowledge of the external effects, the performance of the robot can be further improved by adding the compensation term into the controller.

Findings

The proposed controller has theoretically proved its convergence of image error, adaptive estimation error and the stability of the dynamical system based on Lyapunov’s analysis. The authors also validate the performance of the controller in positioning control task in an underwater environment. The controller shows its capacity of rapid convergence to and accurate tracking performance of a static image target in a physical experiment.

Originality/value

To the best of the authors’ knowledge, there is no such research before that has developed dynamics-based visual servoing controller which takes into account the environment interactions. This work can thus improve the control accuracy and enhance the applicability of soft robotics when operating in complicated environments.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 February 1993

Vojtěch Heřmanský, M. Bilinski, H. Binner, Joon Lee, Dave Lowrie and M. Whiteside

The members of the chapter at the annual meeting held on 27 November 1992 in Brno decided not to split after the separation of Czechoslovakia. It was suggested to organise a…

Abstract

The members of the chapter at the annual meeting held on 27 November 1992 in Brno decided not to split after the separation of Czechoslovakia. It was suggested to organise a larger chapter from the Central European States to provide greater co‐operation and better functioning of the smaller chapters. A new name for the chapter was proposed — Central European Chapter (CEC) — to express neutrality and to point out that the chapter is open to other neighbouring chapters and to new members from the states where no national chapter yet exists.

Details

Microelectronics International, vol. 10 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 10 August 2021

Moez Bellaaj

Many studies have examined the use of social media by either customers or firms, especially in developed markets. However, little is known about why young individual entrepreneurs…

1854

Abstract

Purpose

Many studies have examined the use of social media by either customers or firms, especially in developed markets. However, little is known about why young individual entrepreneurs use digital channels (DCs) as business platforms in emerging markets (EMs) and how they integrate them into their marketing activities. This paper aims to try filling this gap.

Design/methodology/approach

Given the exploratory nature of this research, the authors employ a qualitative approach based on a focus group (12 participants) and semi-structured interviews (8 participants) with young entrepreneurs in Saudi Arabia. The authors adopted a deductive thematic analysis based on pre-determined theoretical frameworks to analyse and interpret the data.

Findings

The authors found that the young entrepreneurs mainly used Instagram, Snapchat and, to a moderate extent, YouTube as digital marketing channels for advertising purposes. However, they used WhatsApp for establishing direct contact and personalising communication with customers. The entrepreneurs used these channels because they are useful, easy to use, cost-effective, fun and widely used by local customers. The authors also found that the entrepreneurs used social media and offline channels conjointly in three main marketing activities (communication/promotion, transactions and customer service) to boost the customer purchasing process. The complementarity of social media and offline channels was found to improve brand visibility, enlarge markets and strengthen the customer relationship. However, the achievement of these benefits varied across small firms depending on the entrepreneurs' abilities in coordinating multiple channels and according to the distinctiveness of their businesses.

Research limitations/implications

This study contributes to the entrepreneurial literature by extending the unified theory of acceptance and use of technology (UTAUT) to explain the motives behind the use of DCs amongst individual entrepreneurs. Furthermore, this paper proposes a novel theoretical framework for studying the interaction between online and offline marketing channels during the purchasing process. Through this framework, the study provides new insights into channel coordination and multi-channel customer behaviours from the entrepreneur's perspective.

Practical implications

This study helps understand why small firms use different DCs. Likewise, it shows how young entrepreneurs coordinate online/offline channels in a complementary manner. The findings could also help in designing appropriate programmes encouraging young entrepreneurs to use online channels and social media to enhance their business activities.

Originality/value

This study offers a novel attempt at explaining the use of DCs and their interaction with traditional channels from the entrepreneur's perspective and brings new insights to why and how young entrepreneurs use DCs in an emerging market.

Details

International Journal of Emerging Markets, vol. 18 no. 9
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 18 December 2017

Yung-Sen Lin, Shiau-Min Lin, Jian-Yi Li and Min-Chih Liao

An investigation has been performed on the improved solder wettability of oxidized aluminum (Al) with lead-free solder (96.5Sn-3.5Ag) using Ar-H2 plasmas. The lead-free solder…

Abstract

Purpose

An investigation has been performed on the improved solder wettability of oxidized aluminum (Al) with lead-free solder (96.5Sn-3.5Ag) using Ar-H2 plasmas. The lead-free solder wettability was raised from 62.2 per cent wetting for Al oxidized in air at 250 C for 4 h to 98.4 per cent wetting of oxidized Al modified by Ar-H2 plasmas at a certain H2 flow rate. This study aims to gain insight on the surface characteristics of Al affecting the solder wettability with a liquid lead-free solder.

Design/methodology/approach

Ar-H2 plasmas at certain H2 flow rates are intended to reduce Al oxides on the surfaces of oxidized Al substrates both by physical bombardments via Ar plasmas and chemical reductions with H2 plasmas, while Al substrates are exposed in Ar-H2 plasmas to improve the solder wettability with a liquid lead-free solder.

Findings

Surface characteristics of oxidized Al substrates have been identified to play key roles for enhanced lead-free solder wettability using Ar-H2 plasmas. A decrease in polar surface free energy and an increase in dispersive surface free energy on the surfaces of oxidized Al substrates are exploited to advance the lead-free solder wettability. Decreased composition ratios of O to Al, detected by X-ray photoelectron spectroscopy (XPS) for oxidized Al substrates, are crucial for improved lead-free solder wettability.

Originality/value

XPS is typically used to analyze the surface compositions of Al oxides. To provide a rapid and non-expansive method to identify the surfaces of Al substrates prior to soldering to assure lead-free solder wettability, this study proposes a measurable skill, a so-called sessile drop test method, to investigate surface free energies such as total, polar and dispersive surface free energy on the surfaces of Al substrates, to illuminate how the lead-free solder wettability of oxidized Al is improved by Ar-H2 plasmas.

Details

Soldering & Surface Mount Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 2005

Xiang Li, Dichen Li, Bingheng Lu, Yiping Tang, Lin Wang and Zhen Wang

To fabricate the self‐hardening calcium phosphate composite scaffolds with controlled internal pore architectures using rapid prototyping (RP) techniques and investigate their in

1618

Abstract

Purpose

To fabricate the self‐hardening calcium phosphate composite scaffolds with controlled internal pore architectures using rapid prototyping (RP) techniques and investigate their in vitro bone tissue engineering responses.

Design/methodology/approach

The three‐dimensionally interconnected pores in scaffolds can facilitate sufficient supply of blood, oxygen and nutrients for the ingrowth of bone cells, tissue regeneration, and vascularization. It is essential for bone tissue engineering to provide an accurate control over the scaffolds material, porosity, and internal pore architectures. Negative image of scaffold was designed and epoxy resin molds were fabricated on sterolithography apparatus. Calcium phosphate cement slurry was cast in these molds. After self‐hardening, the molds were removed by pyrolysis and the resulting scaffolds were obtained.

Findings

Eight scaffolds with 54.45 percent porosity were tested on an Instron machine. The average compressive strength measured was 5.8±0.8 Mpa. Cytotoxicity and cell proliferation studies were conducted with rabbit osteoblast. Results showed that these scaffolds were non‐toxic and displayed excellent cell growth during the 2 weeks of in vitro culture.

Research limitations/implications

The resulting scaffolds inherited errors and defects from the molds, such as cracks and dimensional changes.

Originality/value

The present method enhances the versatility of scaffold fabrication by RP. It is capable of reproducibly fabricating scaffolds from a variety of biomaterials.

Details

Rapid Prototyping Journal, vol. 11 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 May 2016

Xiaoling Wang, Yingrui Hou, Guoqing Wang, Mudong Hao and Hao Li

The purpose of this paper is to illustrate the dependence of flexible-electronics properties on the metal conductor parameters, such as the width, thickness, connection length and…

Abstract

Purpose

The purpose of this paper is to illustrate the dependence of flexible-electronics properties on the metal conductor parameters, such as the width, thickness, connection length and inner meander radius of the conductor.

Design/methodology/approach

This paper uses the finite element method to simulate flexible electronics with a copper conductor attached to polyimide substrate under tension, by using different parameters of the conductor.

Findings

By careful variation of copper conductor parameters, the authors obtain an optimized structure that can undergo large deformations with small stress concentrations, lending convenience for packaging.

Originality/value

The authors have developed an optimization method for selecting metal conductor parameters in flexible electronics.

Article
Publication date: 5 May 2015

F. Aziz, K. Sulaiman, Wissam Khayer Al-Rawi, Z. Ahmad, M.H. Sayyad, Kh. S. Karimov, L.L. Wei and M. Tahir

The purpose of this paper is to investigate the effect of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) on improvement of physical and electrical properties of vanadyl…

Abstract

Purpose

The purpose of this paper is to investigate the effect of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) on improvement of physical and electrical properties of vanadyl phthalocyanine derivative. The correlation between the physical characteristics of the active layers, comprising vanadyl 2,9,16, 23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO) and PCBM, and the electrical properties of metal/organic/metal devices have been studied. The use of soluble vanadyl phthalocyanine derivative makes it very attractive for a variety of applications due to its tunable properties and high solubility.

Design/methodology/approach

The sandwich type structures Al/VOPcPhO/Al and Al/VOPcPhO:PCBM/Al were fabricated by spin casting the active organic layers between the top and bottom (aluminum) electrodes. The stand-alone (VOPcPhO) and composite (VOPcPhO:PCBM) thin films were characterized by X-ray diffraction, atomic force microscopy, UV/Vis and Raman spectroscopy. The electronic properties of the metal/organic/metal devices were studied using current-voltage (I-V) characteristics in dark at room temperature.

Findings

The values of barrier height for Al/VOPcPhO/Al and Al/VOPcPhO:PCBM/Al devices were obtained from the forward bias I-V curves and were found to be 0.7 eV and 0.62 eV, respectively. The present study indicates that the device employing VOPcPhO:PCBM composite film as the active layer, with better structural and morphological characteristics, results in reduced barrier height at the metal-organic film interface as compared to the one fabricated with the stand-alone film.

Research limitations/implications

It is shown that doping VOPcPhO with PCBM improves the crystallinity, morphology and junction properties.

Practical implications

The spin coating technique provides a simple, less expensive and effective approach for preparing thin films. The soluble VOPcPhO is conveniently dissolved in a number of organic solvents.

Originality/value

The physical properties of the VOPcPhO:PCBM composite thin film and the electrical properties of the composite thin-film-based metal/organic/metal devices have not been reported in the literature, as far as our knowledge is concerned.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 December 2015

Xiana T. Santos, Stephen C. Grado and Kevin M. Hunt

The purpose of this paper is to evaluate and improve the current methodology of securing and collecting data sources for use in the Impact Analysis for Planning (IMPLAN) model to…

9927

Abstract

Purpose

The purpose of this paper is to evaluate and improve the current methodology of securing and collecting data sources for use in the Impact Analysis for Planning (IMPLAN) model to more accurately use, and be able to support, inputs and outputs from economic impact models, specifically those generated by IMPLAN.

Design/methodology/approach

Primary expenditure data were derived from an extensive mail survey conducted during the 2005-2006 Mississippi waterfowl-hunting season. Survey results were analyzed using the IMPLAN software model default data and comparing it with new, more localized state data that were collected in 2010. Industry sectors were sorted and ranked after analysis based on sector importance to the economy and IMPLAN default data were replaced by localized data.

Findings

Economic contributions generated from the survey-based default model were $158 million (2010 USD) supporting 1,981 full- and part-time jobs. Economic contributions using survey-based data replacement model were $153 million (2010 USD) supporting 1,517 full- and part-time jobs. Separate model runs of the survey-based data replacement model yielded vastly different results, making the case for changing as many sectors with larger impacts as possible.

Research limitations/implications

The makeup and components of sectors used and described by the IMPLAN model were at times not clearly labeled which at times hindered the process of comparing and replacing data. It was evident that IMPLAN sectors were too highly aggregated.

Originality/value

This project will contribute to efforts within Mississippi aimed at protecting and promoting its natural resources for conservation and use for both the private and public sector.

Details

International Journal of Social Economics, vol. 43 no. 1
Type: Research Article
ISSN: 0306-8293

Keywords

11 – 20 of 593