Search results

1 – 10 of 630
Article
Publication date: 20 October 2023

Ajay Kumar Jaiswal and Pallab Sinha Mahapatra

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer…

Abstract

Purpose

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer analysis of a novel approach to mini-channel embedded film-cooled flat plate.

Design/methodology/approach

Numerical simulations were performed at a steady state using SST kω turbulence model. Impingement and film cooling are classical approaches generally adopted for turbine blade analysis. The existing film cooling techniques were compared with the proposed design, where a mini-channel was constructed inside the solid plate. The impact of the blowing ratio (M), Biot number (Bi) and temperature ratio (TR) on overall cooling performance was also studied.

Findings

Overall cooling effectiveness was always shown to be higher for mini-channel embedded film-cooled plates. The effectiveness increases with increasing the blowing ratio from M = 0.3 to 0.7, then decreases with increasing blowing ratio (M = 1 and 1.4) due to lift-off conditions. The mini-channel embedded plate resulted in an approximately 21% increase in area-weighted average overall effectiveness at a blowing ratio of 0.7 and Bi = 1.605. The lower uniform temperature was also found for all blowing ratios at a low Biot number, where conduction heat transfer significantly impacts total cooling effectiveness.

Originality/value

To the best of the authors’ knowledge, this study presents a novel approach to improve the cooling performances of a film-cooled flat plate with better cooling uniformity by using embedded mini-channels. Despite the widespread application of microchannels and mini-channels in thermal and fluid flow analysis, the application of mini-channels for blade cooling is not explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2023

Safia Akram, Maria Athar, Khalid Saeed, Mir Yasir Umair and Taseer Muhammad

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced…

Abstract

Purpose

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced magnetic field in a tapered channel is examined. The study of propulsion system is on the rise in aerospace research. In spacecraft technology, the propulsion system uses high-temperature heat transmission governed through thermal radiation process. This study will help in assessment of chyme movement in the gastrointestinal tract and also in regulating the intensity of magnetic field of the blood flow during surgery.

Design/methodology/approach

The brief mathematical modelling, along with induced magnetic field, of Williamson nanofluid is given. The governing equations are reduced to dimensionless form by using appropriate transformations. Numerical technique is manipulated to solve the highly nonlinear differential equations. The roll of different variables is graphically analyzed in terms of concentration, temperature, volume fraction of nanoparticles, axial-induced magnetic field, magnetic force function, stream functions, pressure rise and pressure gradient.

Findings

The key finding from the analysis above can be summed up as follows: the temperature profile decreases and concentration profile increases due to the rising impact of thermal radiation. Brownian motion parameter has a reducing influence on nanoparticle concentration due to massive transfer of nanoparticles from a hot zone to a cool region, which causes a decrease in concentration profile· The pressure rise enhances due to rising values of thermophoresis and thermal Grashof number in retrograde pumping, free pumping and copumping region.

Originality/value

To the best of the authors’ knowledge, a study that integrates double-diffusion convection with thermal radiation, viscous dissipation and induced magnetic field on peristaltic flow of Williamson nanofluid with a channel that is asymmetric has not been carried out so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 13 November 2023

Michael A. Katovich

David Maines established himself as one of the premier symbolic interactionists who did not attach himself to any particular interactionist school of thought. In creating an…

Abstract

David Maines established himself as one of the premier symbolic interactionists who did not attach himself to any particular interactionist school of thought. In creating an extensive and intensive legacy via his publications, Maines looked into issues that other interactionists, bound to particular schools of thought, either took for granted or neglected to examine. In so doing, Maines resembled Simmel's Stranger not only as one who fits into a community but also as one who remains distant from the community. One of the key areas of investigation that defined Maines' work and that separated him from other interactionists pertained to his interest in social structure and specifically, how people become structurally situated as social-structural interactors. This chapter examines, in detail, Maines' interest in getting structurally situated and uses a television series, Dopesick, to discuss the relationships between institutional actors as a way to substantiate Maines' theoretical interest in social structure and the activities involved in the process of getting structurally situated.

Details

Festschrift in Honor of David R. Maines
Type: Book
ISBN: 978-1-83753-486-9

Keywords

Article
Publication date: 24 May 2022

Ahmed Benamor, Aissa Abidi-Saad, Ridha Mebrouk and Sarra Fatnassi

This study aims at investigating two-dimensional laminar flow of power-law fluids around three unconfined side-by-side cylinders.

Abstract

Purpose

This study aims at investigating two-dimensional laminar flow of power-law fluids around three unconfined side-by-side cylinders.

Design/methodology/approach

The numerical study is performed by solving the governing (continuity and momentum) equations using a finite volume-based code ANSYS Fluent. The numerical results have been presented for different combinations of the governing dimensionless parameters (dimensionless spacing, 1.2 = L = 4; Reynolds number, 0.1 = Re = 100; power-law index, 0.2 = n = 1.8). The dependence of the kinematic and macroscopic characteristics of the flow such as streamline patterns, distribution of the surface pressure coefficient, total drag coefficient with its components (pressure and friction) and total lift coefficient on these dimensionless parameters has been discussed in detail.

Findings

It is found that the separation of the flow and the apparition of the wake region accelerate as the dimensionless spacing decreases, the number of the cylinder increases and/or the fluid behavior moves from shear-thinning to Newtonian then to shear-thickening behavior. In addition, the distribution of the pressure coefficient on the surface of the cylinders presents a complex dependence on the fluid behavior index and Reynolds number when the dimensionless spacing between two adjacent cylinders is varied. At low Reynolds numbers, the drag coefficient of shear-thinning fluids is stronger than that of Newtonian fluids; this tendency decreases progressively with increasing of Re until a critical value; beyond the critical Re, the opposite trend is observed. The lift coefficient of the middle cylinder is null, whereas, the exterior cylinders experience opposite lift coefficients, which show a complex dependence on the dimensionless spacing, the Reynolds number and the power-law index.

Originality/value

The flow over bluff bodies is a practical engineering problem. In the literature, it can be seen that the previous studies on non-Newtonian fluids are limited to the flow over one or two cylinders (effect of an odd number of cylinders on each other). Besides that, the available results concerning the flow of Newtonian fluids over three cylinders are limited to the high Reynolds numbers region only. However, this work treats the flow of non-Newtonian power-law fluids past three circular cylinders in side-by-side arrangements under a wide range of Re. The outcome of the present study demonstrates that the augmentation of the geometry complexity to three cylinders (effect of pair surrounding cylinders on the surrounded ones in what concerns Von Karman Street phenomenon) causes a drastic change in the flow patterns and in the macroscopic characteristics. The present results may be used to predict the flow behavior around multiple side-by-side cylinders.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 September 2023

Ebrahim Tavousi, Noel Perera, Dominic Flynn and Reaz Hasan

The purpose of the study is to numerically investigate the characteristics of laminar heat transfer and fluid flow in a double tube heat exchanger (DTHE) using water-aluminum…

Abstract

Purpose

The purpose of the study is to numerically investigate the characteristics of laminar heat transfer and fluid flow in a double tube heat exchanger (DTHE) using water-aluminum oxide (Al2O3) nanofluid. The study examines the effects of nanofluid in both counter and parallel flow configurations. Furthermore, an exergy analysis is conducted to assess the impact of nanofluid on exergy destruction.

Design/methodology/approach

The single-phase method has been used for Al2O3 nanoparticles in water as base fluid in a laminar regime for Reynolds numbers from 400 to 2,000. The effects of nanoparticle volume fractions (0 to 0.1), Nusselt number, Reynolds number, heat transfer coefficient, pressure drop, performance evaluation criteria (PEC) and the impact of counter and parallel flow direction have been studied.

Findings

The findings indicate that the incorporation of nanoparticles into the water enhances the heat transfer rate of DTHE. This enhancement is attributed to the improved thermal properties of the working fluid and its impact on the thermal boundary layer. Nusselt number, heat transfer coefficient, and PEC increase by approximately 19.5%, 58% and 1.2, respectively, in comparison to pure water. Conversely, the pressure drop experiences a 5.3 times increase relative to pure water. Exergy analysis reveals that nanofluids exhibit lower exergy destruction compared to pure water. The single-phase method showed better agreement with the experimental results compared to the two-phase method.

Originality/value

Dimensionless correlations were derived and validated with experimental and numerical results for the Nusselt number and PEC for both counter and parallel flow configurations based on the Reynolds number and nanoparticles volume fraction with high accuracy to predict the performance of DTHE without performing time-consuming simulations. Also, an exergy analysis was performed to compare the exergy destruction between nanofluid and pure water.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 September 2023

Mohammad Abbaszadeh, Mohammad Hossein Montazeri and Mojtaba Mirzaie

The purpose of the study is to propose a novel implementation of twisted tape in sinusoidal wavy-walled tubes to enhance the rate of heat transfer without compromising thermal…

Abstract

Purpose

The purpose of the study is to propose a novel implementation of twisted tape in sinusoidal wavy-walled tubes to enhance the rate of heat transfer without compromising thermal efficiency. The study numerically investigates the fluid flow characteristics and analyzes the effect of different geometrical configurations, including wall wave amplitude, tape twist angles and nanoparticle volume fractions, on heat transfer improvement and performance factor.

Design/methodology/approach

This problem is numerically investigated using computational fluid dynamics, and the method is the finite volume method. A two-phase mixture model is used for nanofluid modeling.

Findings

The study investigated the effect of wall waviness, twisted tape, and nanoparticles on forced convective heat transfer and friction factor behavior in laminar pipe flow in three different Reynolds number regimes. The results showed that implementing twisted tape in wavy tubes significantly increased the rate of heat transfer and the performance factor, with the best twist ratio between 90 and 180°. Adding nanoparticles also enhanced heat transfer and performance factor, but to a lesser extent than wavy wall-twisted tape combinations. The study suggests selecting a proper combination of wavy wall and twisted tape at each Reynolds number to achieve an optimum solution.

Originality/value

To the best of the authors’ knowledge, the implementation of the selected passive methods in sinusoidal wavy tubes has not been studied before, and no previous studies have taken into account such a mix of heat transfer improvement techniques.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 February 2024

Shinyong Jung, Alei Fan, Xinran Lehto and Hhye Won Shin

This study aims to explore a potential conference experience design strategy, namely, festivalization. It investigates the potential festivalization effects on conference…

Abstract

Purpose

This study aims to explore a potential conference experience design strategy, namely, festivalization. It investigates the potential festivalization effects on conference attendees in two formats of business conferences: virtual and in-person.

Design/methodology/approach

A series of two scenario-based experimental studies were conducted. A series of one-way analysis of covariance and PROCESS procedures (Model 6) were performed for data analysis.

Findings

The inclusion of festivalization elements significantly enhances positive responses of attendees, especially for in-person conferences. This effect is further explained by a serial mediation effect, where enhanced perceived values and conference engagement play key roles in improving attendees’ conference experience.

Practical implications

By incorporating festivalization elements, conference organizers can create a more engaging and satisfying event experience for attendees. This can lead to greater satisfaction, positive word-of-mouth and increased registrations.

Originality/value

This study represents a pioneering effort in revealing the underlining mechanisms that explain how festivalization affects attendee engagement and subsequent behaviors in business event management in both face-to-face and virtual settings.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2024

Jagadesh Vardagala, Sreenadh Sreedharamalle, Ajithkumar Moorthi, Sucharitha Gorintla and Lakshminarayana Pallavarapu

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix…

Abstract

Purpose

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix. Electrically conducting biofluid flows with Ohmic heating have many biomedical and industrial applications. The purpose of this study is to provide the significance of the effects of Ohmic heating and viscous dissipation on electrically conducting Casson nanofluid flow driven by peristaltic pumping through a vertical porous channel.

Design/methodology/approach

In this analysis, the non-Newtonian properties of fluid will be characterized by the Casson fluid model. The long wavelength approach reduces the complexity of the governing system of coupled partial differential equations with non-linear components. Using a regular perturbation approach, the solutions for the flow quantities are established. The fascinating and essential characteristics of flow parameters such as the thermal Grashof number, nanoparticle Grashof number, magnetic parameter, Brinkmann number, permeability parameter, Reynolds number, Casson fluid parameter, thermophoresis parameter and Brownian movement parameter on the convective peristaltic pumping are presented and thoroughly addressed. Furthermore, the phenomenon of trapping is illustrated visually.

Findings

The findings indicate that intensifying the permeability and Casson fluid parameters boosts the temperature distribution. It is observed that the velocity profile is elevated by enhancing the thermal Grashof number and perturbation parameter, whereas it reduces as a function of the magnetic parameter and Reynolds number. Moreover, trapped bolus size upsurges for greater values of nanoparticle Grashof number and magnetic parameter.

Originality/value

There are some interesting studies in the literature to explain the nature of the peristaltic flow of non-Newtonian nanofluids under various assumptions. It is observed that there is no study in the literature as investigated in this paper.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 630