Search results

1 – 3 of 3
Article
Publication date: 18 January 2024

Zaihua Luo, Juliang Xiao, Sijiang Liu, Mingli Wang, Wei Zhao and Haitao Liu

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too…

Abstract

Purpose

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification.

Design/methodology/approach

First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified.

Findings

Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models.

Originality/value

This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 June 2023

Yanli Feng, Ke Zhang, Haoyu Li and Jingyu Wang

Due to dynamic model is the basis of realizing various robot control functions, and it determines the robot control performance to a large extent, this paper aims to improve the…

159

Abstract

Purpose

Due to dynamic model is the basis of realizing various robot control functions, and it determines the robot control performance to a large extent, this paper aims to improve the accuracy of dynamic model for n-Degree of Freedom (DOF) serial robot.

Design/methodology/approach

This paper exploits a combination of the link dynamical system and the friction model to create robot dynamic behaviors. A practical approach to identify the nonlinear joint friction parameters including the slip properties in sliding phase and the stick characteristics in presliding phase is presented. Afterward, an adaptive variable-step moving average method is proposed to effectively reduce the noise impact on the collected data. Furthermore, a radial basis function neural network-based friction estimator for varying loads is trained to compensate the nonlinear effects of load on friction during robot joint moving.

Findings

Experiment validations are carried out on all the joints of a 6-DOF industrial robot. The experimental results of joint torque estimation demonstrate that the proposed strategy significantly improves the accuracy of the robot dynamic model, and the prediction effect of the proposed method is better than that of existing methods.

Originality/value

The proposed method extends the robot dynamic model with friction compensation, which includes the nonlinear effects of joint stick motion, joint sliding motion and load attached to the end-effector.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 18 April 2023

Wenzhen Yang, Johan K. Crone, Claus R. Lønkjær, Macarena Mendez Ribo, Shuo Shan, Flavia Dalia Frumosu, Dimitrios Papageorgiou, Yu Liu, Lazaros Nalpantidis and Yang Zhang

This study aims to present a vision-guided robotic system design for application in vat photopolymerization additive manufacturing (AM), enabling vat photopolymerization AM hybrid…

Abstract

Purpose

This study aims to present a vision-guided robotic system design for application in vat photopolymerization additive manufacturing (AM), enabling vat photopolymerization AM hybrid with injection molding process.

Design/methodology/approach

In the system, a robot equipped with a camera and a custom-made gripper as well as driven by a visual servoing (VS) controller is expected to perceive objective, handle variation, connect multi-process steps in soft tooling process and realize automation of vat photopolymerization AM. Meanwhile, the vat photopolymerization AM printer is customized in both hardware and software to interact with the robotic system.

Findings

By ArUco marker-based vision-guided robotic system, the printing platform can be manipulated in arbitrary initial position quickly and robustly, which constitutes the first step in exploring automation of vat photopolymerization AM hybrid with soft tooling process.

Originality/value

The vision-guided robotic system monitors and controls vat photopolymerization AM process, which has potential for vat photopolymerization AM hybrid with other mass production methods, for instance, injection molding.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Year

Last 12 months (3)

Content type

1 – 3 of 3