Search results

1 – 10 of over 1000
Article
Publication date: 20 November 2020

S. Madhu and M. Balasubramanian

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish…

Abstract

Purpose

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish with high-level precision and minimization of waste. Among the various advanced machining processes, abrasive jet machining (AJM) is one of the non-traditional machining techniques used for various applications such as polishing, deburring and hole making. Hence, an overview of the investigations done on carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GRFP) composites becomes important.

Design/methodology/approach

Discussion on various approaches to AJM, the effect of process parameters on the glass fiber and carbon fiber polymeric composites are presented. Kerf characteristics, surface roughness and various nozzle design were also discussed.

Findings

It was observed that abrasive jet pressure, stand-off distance, traverse rate, abrasive size, nozzle diameter, angle of attack are the significant process parameters which affect the machining time, material removal rate, top kerf, bottom kerf and kerf angle. When the particle size is maximum, the increased kinetic energy of the particle improves the penetration depth on the CFRP surface. As the abrasive jet pressure is increased, the cutting process is enabled without severe jet deflection which in turn minimizes the waviness pattern, resulting in a decrease of the surface roughness.

Research limitations/implications

The review is limited to glass fiber and carbon fiber polymeric composites.

Practical implications

In many applications, the use of composite has gained wide acceptance. Hence, machining of the composite need for the study also has gained wide acceptance.

Social implications

The usage of composites reduces the usage of very costly materials of high density. The cost of the material also comes down.

Originality/value

This paper is a comprehensive review of machining composite with abrasive jet. The paper covers in detail about machining of only GFRP and CFRP composites with various nozzle designs, unlike many studies which has focused widely on general AJM of various materials.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 July 2021

M. Balasubramanian and S. Madhu

The purpose of this study is to bring out the machining characteristics of abrasive jet machining on carbon fibre reinforced thermoplastic composites utilized in aerospace and…

Abstract

Purpose

The purpose of this study is to bring out the machining characteristics of abrasive jet machining on carbon fibre reinforced thermoplastic composites utilized in aerospace and biomedical applications. Biocompatibility materials such as carbon fibres and polyether thermoplastics, like polyether ether ketone (PEEK) are widely used in trauma and orthopaedic surgery. Due to the heterogeneity, layered construction of reinforcing phase bonds with a resin matrix and abrasiveness of the reinforcing fibre, traditional drilling of carbon fibre-reinforced composites (CFRPs) are always challenging task.

Design/methodology/approach

An investigation is carried out using abrasive jet machine for drilling PEEK filled with 30 Wt.% carbon fibre (CF 30) using threaded and unthreaded nozzle to study the effect of abrasive jet process variables on surface roughness (Ra) and delamination factor (DF). Pressure (P) and stand-off distance (SOD) as important technological abrasive jet factors were evaluated. It is found that higher abrasive jet pressure and minimum SOD maybe selected to achieve minimum delamination.

Findings

The study further reported that the threaded nozzle minimized the surface roughness by 43% and delamination factor up to 12%.

Originality/value

This study of experimenting and observing the machining characteristics of CF30 by using a threaded nozzle is being tried for the first time and the results are deliberated.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 March 2020

M. Balasubramanian and R. Kumar

In friction welding of dissimilar joint method, few material compositions are not possible to weld effectively. For better dissimilar metal joining in friction welding, the…

81

Abstract

Purpose

In friction welding of dissimilar joint method, few material compositions are not possible to weld effectively. For better dissimilar metal joining in friction welding, the interlayer techniques are used by the third metal to increase the diffusion for suitable metal bonding. The interlayer metals are popularly held by coating, foils, sheet and solid rod form. The coating method needs more care for surface preparation with special coating equipment with high workmanship. In case of foil as intermediate metal, more care is neededfor holding between the metal; most of the time this technique has the possibility of failure by peeling off from the contact surface during high speed rotation with pressure during friction generation.

Design/methodology/approach

In this investigation, a copper coin was machined to a suitable size (transition fit) to suit the recess inside the SS rod. The mating surfaces of Cu coin, SS rod and Ti alloy were machined, polished to mirror finish and handled in friction welding machine. The purpose of the transition fit between the coin and SS rod is for holding the same intact before the beginning of the process.

Findings

Successful joint was achieved with good joint strength at less time. Empirical models were established to fin out the joint strength at any given parameter within the range of investigation

Research limitations/implications

The models developed can be used only within the range of investigation considered for experimentation.

Practical implications

The paper includes implications for the development of a method of joining any dissimilar joints

Originality/value

In this investigation, a copper coin was machined to a suitable size (transition fit) to suit the recess inside the SS rod. The mating surfaces of Cu coin, SS rod and Ti alloy were machined, polished to mirror finish and handled in friction welding machine. The purpose of the transition fit between the coin and SS rod is for holding the same intact before the beginning of the process.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 October 1999

G. Subramanian, S. Palraj and T.M. Balasubramanian

The galvanic corrosion interactions of zinc and SS.304 have been studied in a tropical marine environment over a period of 427 days, under different area ratios. The galvanic…

Abstract

The galvanic corrosion interactions of zinc and SS.304 have been studied in a tropical marine environment over a period of 427 days, under different area ratios. The galvanic interaction of zinc and SS.304 are highlighted in terms of the corrosion rate of zinc or SS.304 resulting from galvanic coupling, and the susceptibility of zinc to pitting due to galvanic corrosion. The galvanic potential and galvanic current of the system are monitored. The corrosion products at the interface of the bimetallic contacts are analysed with XRD technique and the pitting/grooving on zinc resulting from galvanic corrosion is measured using a high resolution microscope. The weathering parameters and environmental pollutants are monitored to give an insight into the possible means of favouring the galvanic interactions. The results of the study are discussed in the light of the above factors towards predicting a mechanism for the galvanic interactions of zinc and SS.304.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 June 2021

M. Balasubramanian and S. Madhu

The purpose of the study is to machine the composites at lower machining time with higher accuracy without causing delamination.

Abstract

Purpose

The purpose of the study is to machine the composites at lower machining time with higher accuracy without causing delamination.

Design/methodology/approach

Abrasive jet machining is the technology appropriate for machining composite materials to obtain good dimensional accuracy without causing de-lamination. The central composite design was followed in deciding the number of experiments to be carried out.

Findings

The influence of abrasive jet machining process parameters on machining time, material removal rate (MRR) and kerf characteristics were investigated. The experimental results proved the newly designed internal threaded nozzle increased MRR, thereby reducing the machining time.

Originality/value

Machining of glass fibre reinforced polymer (GFRP) is one of the challenging tasks given its non-linear and in-homogeneous properties. In this investigation, newly developed threaded and unthreaded nozzles in machining were used for making holes on the GFRP composites.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 November 2021

M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Abstract

Purpose

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Design/methodology/approach

Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.

Findings

The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.

Originality/value

This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 January 2022

Ilesanmi Daniyan, Khumbulani Mpofu and Samuel Nwankwo

The need to examine the integrity of infrastructure in the rail industry in order to improve its reliability and reduce the chances of breakdown due to defects has brought about…

Abstract

Purpose

The need to examine the integrity of infrastructure in the rail industry in order to improve its reliability and reduce the chances of breakdown due to defects has brought about development of an inspection and diagnostic robot.

Design/methodology/approach

In this study, an inspection robot was designed for detecting crack, corrosion, missing clips and wear on rail track facilities. The robot is designed to use infrared and ultrasonic sensors for obstacles avoidance and crack detection, two 3D-profilometer for wear detection as well as cameras with high resolution to capture real time images and colour sensors for corrosion detection. The robot is also designed with cameras placed in front of it with colour sensors at each side to assist in the detection of corrosion in the rail track. The image processing capability of the robot will permit the analysis of the type and depth of the crack and corrosion captured in the track. The computer aided design and modeling of the robot was carried out using the Solidworks software version 2018 while the simulation of the proposed system was carried out in the MATLAB 2020b environment.

Findings

The results obtained present three frameworks for wear, corrosion and missing clips as well as crack detection. In addition, the design data for the development of the integrated robotic system is also presented in the work. The confusion matrix resulting from the simulation of the proposed system indicates significant sensitivity and accuracy of the system to the presence and detection of fault respectively. Hence, the work provides a design framework for detecting and analysing the presence of defects on the rail track.

Practical implications

The development and the implementation of the designed robot will bring about a more proactive way to monitor rail track conditions and detect rail track defects so that effort can be geared towards its restoration before it becomes a major problem thus increasing the rail network capacity and availability.

Originality/value

The novelty of this work is based on the fact that the system is designed to work autonomously to avoid obstacles and check for cracks, missing clips, wear and corrosion in the rail tracks with a system of integrated and coordinated components.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 6 May 2021

Nataraj Balasubramanian and M. Balaji

The purpose of this paper is to conceptualise and develop a scale for measuring employees’ perception on the sustainability of service organisations. With several companies…

1650

Abstract

Purpose

The purpose of this paper is to conceptualise and develop a scale for measuring employees’ perception on the sustainability of service organisations. With several companies adopting sustainability initiatives, it is prudent to measure the sustainability performance of those companies. Given the multidisciplinary nature of the sustainability measures and its associated challenges, this paper attempts to develop a scale to measure employees’ perception of sustainability of an organisation.

Design/methodology/approach

A structured questionnaire was developed and 977 samples were collected based on snowball sampling method. For scale development, this study randomised 586 samples to conduct exploratory factor analysis (EFA) and used the remaining samples for validation using confirmatory factor analysis (CFA).

Findings

The existing literature on sustainability focusses on three dimensions, namely, economic, social and environmental sustainability measures. This paper explored the similarities of the three dimensions to serve as critical determinants for measuring employees’ perception of sustainability with the collected data from service industries. The EFA revealed that there were six factors for organisational sustainability with 26 questionnaire items. The six factors are as follows: environment management, employee-related sustainability, public related sustainability, financial sustainability, pollution control measures and governance sustainability. The identified factors were tested using CFA and the results are discussed.

Research limitations/implications

This paper will be beneficial for the academicians in sustainability and the policy-makers as it provides a scale to measure employees’ perception on the sustainability of an organisation. This paper adds value to the research by providing a six-factor measurement model for organizational sustainability of selected service industries.

Practical implications

The paper is highly beneficial to the organisations to measure employees’ perception on sustainability and ascertain their position in supporting the holistic development of environment and society, thereby improving the goodwill and reputation of the organisation.

Originality/value

This paper provides insights about measuring employees’ perception on organizational sustainability. A six-factor measurement model has been proposed for organisational sustainability.

Details

Measuring Business Excellence, vol. 26 no. 3
Type: Research Article
ISSN: 1368-3047

Keywords

Article
Publication date: 18 November 2019

Vinoth Kumar M. and Balasubramanian V.

Super 304HCu super austenitic stainless steel tubes containing 2.3 to 3 (Wt.%) of copper (Cu) is used in superheaters and reheater tubings of nuclear power plants. In general…

Abstract

Purpose

Super 304HCu super austenitic stainless steel tubes containing 2.3 to 3 (Wt.%) of copper (Cu) is used in superheaters and reheater tubings of nuclear power plants. In general, austenitic stainless steels welded by conventional constant current gas tungsten arc welding (CC-GTAW) produce coarse columnar grains, alloy segregation and may result in inferior mechanical properties. Pulsed current gas tungsten arc welding (PC-GTAW) can control the solidification structure by altering the prevailing thermal gradients in the weld pool.

Design/methodology/approach

Super 304HCu tubes of Ø 57.1 mm and the wall thickness of 3.5 mm were autogenously welded using CC and PC-GTAW processes. Joints are characterized using optical microscopy, electron microscopy, energy dispersive spectroscopy and electron backscatter diffraction (EBSD) techniques. Hot tensile properties of the weld joints were evaluated and correlated with their microstructural features.

Findings

Current pulsing in GTAW has resulted in minimal eutectic film segregation, lower volume % of delta ferrite and appreciable improvement in tensile properties than CC-GTAW joints.

Originality/value

The EBSD boundary map and inverse pole orientation map of Super 304HCu weld joints evidence the grain refinement and much frequent high angle grain boundaries achieved using weld current pulsing.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 March 2022

Faradewi Bee A. Rahman, Mohd Hafiz Hanafiah, Mohd Salehuddin Mohd Zahari and Lovelyna Benedict Jipiu

This study investigates the relationship between social commerce adoption determinants, perceived trust and purchase behaviour among pastry product consumers.

1342

Abstract

Purpose

This study investigates the relationship between social commerce adoption determinants, perceived trust and purchase behaviour among pastry product consumers.

Design/methodology/approach

The research data were collected using a five-point Likert from 409 pastry consumers through an online survey. Partial least square-structural equation modelling (PLS-SEM) was utilised to test the study model and hypotheses.

Findings

The study findings indicate that pastry consumers perceived social commerce as effortless, engaging, enjoyable, can be trusted, simple to use and time-saving, motivating them to consume pastry products via social commerce platforms.

Practical implications

This study provides insights and implications for social commerce researchers and marketers related explicitly to perishable products.

Originality/value

This study is one of the few studies that predict and explain the consumer acceptance of social commerce in the pastry products realm. As only a handful of research has endeavoured to research social commerce, this study findings contribute to the conceptualisation of technology acceptance theory by understanding the determinants of social commerce adoption among consumers.

Details

British Food Journal, vol. 125 no. 1
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 10 of over 1000