Search results

1 – 2 of 2
Article
Publication date: 8 July 2022

Xiaolong Yang, Long Zheng, Da Lü, Jinhao Wang, Shukun Wang, Hang Su, Zhixin Wang and Luquan Ren

Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research…

1061

Abstract

Purpose

Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research progress of snake-inspired robots according to their application environments. It classifies snake-inspired robots according to the numbers of degrees of freedom in each joint and briefly describes the modeling and control of snake-inspired robots. Finally, the application fields and future development trends of snake-inspired robots are analyzed and discussed.

Design/methodology/approach

This paper summarizes the research progress of snake-inspired robots and clarifies the requirements of snake-inspired robots for self-adaptive environments and multi-functional tasks. By equipping various sensors and tool modules, snake-inspired robots are developed from fixed-point operation in a single environment to autonomous operation in an amphibious environment. Finally, it is pointed out that snake-inspired robots will be developed in terms of rigid and flexible deformable structure, long endurance and multi-function and intelligent autonomous control.

Findings

Inspired by the modular and reconfigurable concepts of biological snakes, snake-inspired robots are well adapted to unknown and changing environments. Therefore, snake-inspired robots will be widely used in industrial, military, medical, post-disaster search and rescue applications. Snake-inspired robots have become a hot research topic in the field of bionic robots.

Originality/value

This paper summarizes the research status of snake-inspired robots, which facilitates the reader to be a comprehensive and systematic understanding of the research progress of snake-inspired robots. This helps the reader to gain inspiration from biological perspectives.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 25 September 2018

Long Zheng, Yihang Gao, Yinghui Zhong, Guolong Lu, Zhenning Liu and Luquan Ren

The purpose of this study is to elucidate the size effect (groove width, unit length and area density) of the hexagonal texture on tribological properties under lubrication.

Abstract

Purpose

The purpose of this study is to elucidate the size effect (groove width, unit length and area density) of the hexagonal texture on tribological properties under lubrication.

Design/methodology/approach

The tribological properties of nine hexagonal textures with different hexagon lengths and groove widths have been investigated under mixed lubrication to elucidate the size effect.

Findings

Overall, the friction coefficient decreases as the groove width increases within the examined range, whereas the hexagon length shows an optimal value around 3 mm. In particular, one hexagonal texture (3 × 3 mm) exhibits lower friction coefficients and less wear losses than the others. Interestingly, two hexagonal textures of similar area density (1 × 1 mm and 3 × 3 mm) yield the worst and best tribological performances, respectively, which can be explained by the simulated distribution of equivalent stress.

Originality/value

The tribological properties of nine hexagonal textures are examined under lubrication. The 3 × 3 texture exhibits lower friction coefficient and wear loss than the others. Two textures of similar area density yield the worst and best tribological performances. The results agree with the simulated distribution of equivalent stress.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Access

Year

All dates (2)

Content type

1 – 2 of 2