Search results

1 – 10 of 46
Article
Publication date: 9 April 2024

Abdul-Majid Wazwaz

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and…

Abstract

Purpose

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and equivalence aspects.

Design/methodology/approach

The Painlevé analysis confirms the complete integrability of both Kairat-II and Kairat-X equations.

Findings

This study explores multiple soliton solutions for the two examined models. Moreover, the author showed that only Kairat-X give lump solutions and breather wave solutions.

Research limitations/implications

The Hirota’s bilinear algorithm is used to furnish a variety of solitonic solutions with useful physical structures.

Practical implications

This study also furnishes a variety of numerous periodic solutions, kink solutions and singular solutions for Kairat-II equation. In addition, lump solutions and breather wave solutions were achieved from Kairat-X model.

Social implications

The work formally furnishes algorithms for studying newly constructed systems that examine plasma physics, optical communications, oceans and seas and the differential geometry of curves, among others.

Originality/value

This paper presents an original work that presents two newly developed Painlev\'{e} integrable models with insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 30 January 2024

Abdul-Majid Wazwaz

The purpose of this paper is to investigate a variety of Painlevé integrable equations derived from a Hamiltonian equation.

Abstract

Purpose

The purpose of this paper is to investigate a variety of Painlevé integrable equations derived from a Hamiltonian equation.

Design/methodology/approach

The newly developed Painlevé integrable equations have been handled by using Hirota’s direct method. The authors obtain multiple soliton solutions and other kinds of solutions for these six models.

Findings

The developed Hamiltonian models exhibit complete integrability in analogy with the original equation.

Research limitations/implications

The present study is to address these two main motivations: the study of the integrability features and solitons and other useful solutions for the developed equations.

Practical implications

The work introduces six Painlevé-integrable equations developed from a Hamiltonian model.

Social implications

The work presents useful algorithms for constructing new integrable equations and for handling these equations.

Originality/value

The paper presents an original work with newly developed integrable equations and shows useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 September 2022

Natiq Yaseen Taha Al-Menahlawi, Mohammad Reza Khoshravan Azar, Tajbakhsh Navid Chakherlou and Hussein Al-Bugharbee

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in…

Abstract

Purpose

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in the thickness direction. In this article, polymethyl methacrylate is used for matrix, and single-walled carbon nanotube (CNTs) (10,10) with consideration agglomeration sizes and lumping of CNT inside the agglomerations is applied for reinforcement.

Design/methodology/approach

In analytical formulation, the non-linear Hertz contact law is applied for interaction between projectile and plate surface. High-order shear deformation plate theory is developed, and energy of the system for impactor and plate is written. The governing equations are derived using Ritz method and Lagrange equations and are solved using the fourth-order Runge–Kutta method. Also, ABAQUS finite element model of functionally graded porous plate with all edges simply supported and reinforced by CNT under low-velocity impact is simulated and is compared with those is achieved in the present analytical approach.

Findings

In parametric studies, the influence of porosity distribution patterns include uniform, non-uniform symmetric and non-uniform asymmetric on the histories of contact force and impactor displacement of simply supported plate reinforced by CNT are presented. Eventually, the effects of porosity coefficient, impactor initial velocity, impactor radius and CNTs lumping inside agglomerations for non-uniform symmetric distribution patterns are discussed in impact event in detail.

Originality/value

In this paper, the effect of combination of polymethyl methacrylate and CNTs with consideration agglomeration sizes and lumping of CNTs inside the agglomerations in the form of a functionally graded porous plate is studied in the problem of low-velocity impact analysis.

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Case study
Publication date: 27 February 2024

Beverly J. Best, Katerina Nicolopoulou, Paul Lassalle, Henry Eze and Afsa Mukasa

After completion of the case study, students will be able to identify and discuss ways in which informal financing of the kind discussed in the case study can provide new or…

Abstract

Learning outcomes

After completion of the case study, students will be able to identify and discuss ways in which informal financing of the kind discussed in the case study can provide new or different opportunities for access to alternative financing schemes; assess the role of“social capital” in micro and small business development and to understand and apply the role of social capital for female entrepreneurs in the Global South; critically analyse and reflect on the new role of digital technologies in challenging traditional patriarchal social norms and exclusion and ultimately be able to evaluate the role of digital technologies in terms of its practical implications for female entrepreneurs; and understand the role played by socio-cultural and historical contexts in female-owned/managed businesses within informal sectors of the economy. Furthermore, the students should be able to discuss how these contexts provide opportunities or challenges for actionable/robust/relevant business plans for female entrepreneurs.

Case overview/synopsis

This case study aims to create a platform for classroom conversations around: context of entrepreneurship in informal economies, challenges of accessing finance, women entrepreneurship, opportunities of digital entrepreneurship and resource acquisition and social capital. Overall, this case study intends to inspire and cultivate additional voices to advance authentic understanding of informal business practices in the financial sector that go beyond traditional formal western settings. This case study is based on a true story relating to the “sou-sou” financing system – an informal financing scheme – originating from West Africa which has been transported to other parts of the world including Latin America and the Caribbean (LAC) and other parts of Africa. The characters involve Maria, the main protagonist; Eunice, from LAC; and Fidelia from West Africa. With first-hand information from Eunice and Fidelia, Maria learnt about the ideological principles and the offerings of flexibility, trust, mutual benefits and kinship of the sou-sou system and was inspired to integrate digital technologies as a sustainable game changer for accessing microfinance. This case study draws on the contextual understanding of the economy in the Global South as well as the gender-based aspects of entrepreneurship as key aspects of women entrepreneurship and digital entrepreneurship. The sou-sou system is presented as a practical solution to the challenges faced by women entrepreneurs in the Global South to access finances, and the integration of digital technologies is considered instrumental not only in reinforcing the traditional system but also in transforming the entrepreneurial prospects for these women.

Complexity academic level

This teaching activity is aimed at postgraduate students in Master of Management and Master of Business Administration programmes. It can also be used for short executive courses, specialised PhD seminars and advanced bachelor programmes. This case study could be taught in the field of entrepreneurship in areas related to technology, gender, women entrepreneurship and financing in the context of the Global South.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 3: Entrepreneurship.

Article
Publication date: 22 January 2024

Peng Yin, Tao Liu, Baofeng Pan and Ningbo Liu

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient…

Abstract

Purpose

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.

Design/methodology/approach

The formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.

Findings

The results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.

Originality/value

Moreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Abstract

Details

Communicating Climate
Type: Book
ISBN: 978-1-83753-643-6

Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 February 2024

Rosli Said, Mardhiati Sulaimi, Rohayu Ab Majid, Ainoriza Mohd Aini, Olusegun Olaopin Olanrele and Omokolade Akinsomi

This study aims to address the critical need for innovative financing solutions in the global housing sector, focusing specifically on Malaysia’s distinct housing finance system…

Abstract

Purpose

This study aims to address the critical need for innovative financing solutions in the global housing sector, focusing specifically on Malaysia’s distinct housing finance system encompassing both conventional and Islamic loans. The primary objective is to develop a transformative housing finance model that addresses affordability challenges and reshapes the Malaysian housing landscape.

Design/methodology/approach

The study presents an alternate housing finance model for Malaysia, integrating lower monthly payments and reduced household debt. Key variables include house price appreciation rates, interest rates, initial guarantee fees and loan-to-value ratios. Inspired by the Help to Buy (HTB) scheme, the model aligns with proven global initiatives for enhanced affordability, balancing payment amounts, loan interest rates and acceptable price thresholds.

Findings

The study’s findings promise to address affordability disparities and reshape Malaysia’s housing finance landscape. The emphasis is on introducing a structured repayment plan that offers a sustainable path to homeownership, particularly for low-income families. Incorporating the future value adaptation concept, inspired by reverse mortgages and Islamic finance, enhances adaptability, ensuring long-term sustainability despite economic shifts.

Practical implications

The proposed model promotes widespread access to homeownership, offering practical solutions for policymakers to improve affordability, prompting adaptable risk management strategies for financial institutions and empowering potential homebuyers with increased flexibility.

Originality/value

The study introduces a transformative housing finance model for Malaysia, merging elements from reverse mortgages, Islamic finance and the HTB scheme, offering potential applicability to similar systems globally.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

1 – 10 of 46