Search results

1 – 1 of 1
Open Access
Article
Publication date: 22 September 2021

Gianluca Maguolo, Michelangelo Paci, Loris Nanni and Ludovico Bonan

Create and share a MATLAB library that performs data augmentation algorithms for audio data. This study aims to help machine learning researchers to improve their models using the…

2110

Abstract

Purpose

Create and share a MATLAB library that performs data augmentation algorithms for audio data. This study aims to help machine learning researchers to improve their models using the algorithms proposed by the authors.

Design/methodology/approach

The authors structured our library into methods to augment raw audio data and spectrograms. In the paper, the authors describe the structure of the library and give a brief explanation of how every function works. The authors then perform experiments to show that the library is effective.

Findings

The authors prove that the library is efficient using a competitive dataset. The authors try multiple data augmentation approaches proposed by them and show that they improve the performance.

Originality/value

A MATLAB library specifically designed for data augmentation was not available before. The authors are the first to provide an efficient and parallel implementation of a large number of algorithms.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 1 of 1