Search results

1 – 10 of over 2000
Article
Publication date: 13 February 2007

Zbigniew A. Szydlo

To provide information on the distribution of oil deposition inside the pipe conducting oil mist used for lubricating purposes and to show resulting variations of oil/air ratio.

2468

Abstract

Purpose

To provide information on the distribution of oil deposition inside the pipe conducting oil mist used for lubricating purposes and to show resulting variations of oil/air ratio.

Design/methodology/approach

The model of an industrial pipeline has been assembled ranging more than 100 m away from the oil mist source, equipped with devices collecting oil deposited inside the pipes. Other tests were performed in stands constructed as parts of pipes coiled in helical form. Long time experiments with continuous oil mist flow enabled to achieve calculable results.

Findings

The quantitative results obtained in experimental investigation on the reduction of oil/air ratio in an oil mist header system show that considerable differences of the oil/air ratio may be observed in a typical long pipeline. Possible consequences of oil deficiency on lubrication of remote mechanisms are presented in the case study. Results of tests are shown in diagrams and tables. These results may be useful for correction of design calculations procedures.

Research limitations/implications

Tests have been made on the basis of one kind of the oil atomized in typical condition and conveyed with steady flow through the piping of rather simple geometry. However, there are other factors affecting oil droplets deposition and the most influencing are probably: the flow velocity/pipe diameter factor, oil atomization characteristics and the geometry of the oil mist piping.

Practical implications

The research has shown dramatic decrease of oil content in the long distance systems that may result in poor lubrication of remote mechanisms or over lubrication of those located close to the oil mist generator. It should be taken on account in calculation of oil mist demand to particular lubrication points.

Originality/value

Presented tests have been carried in the scale and flow parameters very close to those applied in industry. Thus, the results are reliable and could be very useful both for designers and the practitioners of centralized oil mist systems.

Details

Industrial Lubrication and Tribology, vol. 59 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 April 2013

Kunhong Hu, Yongkui Cai, Xianguo Hu and Yufu Xu

The purpose of this paper is to explore the synergistic lubrication of MoS2 particles with different morphologies.

Abstract

Purpose

The purpose of this paper is to explore the synergistic lubrication of MoS2 particles with different morphologies.

Design/methodology/approach

The synergistic lubrication of MoS2 particles with different morphologies is evaluated using a four‐fall tribometer in liquid paraffin.

Findings

Results show that the morphology of MoS2 has an influence on the tribological properties of MoS2. Both MoS2 nano‐balls and nano‐platelets function as lubrication additives in liquid paraffin better than MoS2 micro‐platelets do. It is also found that there is a synergistic lubrication between two different morphologies of MoS2. The composite MoS2 additives with different morphologies can improve the wear resistance and friction reduction of liquid paraffin more than each of them singly does. The synergistic lubrication between two different MoS2 morphologies results from the cooperation of their different lubrication mechanism.

Originality/value

The paper reveals a synergistic lubrication between two different MoS2 structures. It is very advantageous and practical to partly displace nano‐MoS2 with micro‐MoS2.

Details

Industrial Lubrication and Tribology, vol. 65 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 June 2023

Junchao Kong

Powder lubrication is widely used in industrial production, but most of the research that analyze the wear process and speculate on the wear mechanism of the tested specimens…

Abstract

Purpose

Powder lubrication is widely used in industrial production, but most of the research that analyze the wear process and speculate on the wear mechanism of the tested specimens lacks reliability, and it is difficult to reveal the essence of the friction and wear process. The purpose of this paper is using the optical in situ observation method to observe the condition of the powder lubrication layer in real time and dynamically, and directly obtain the morphology change of the specimen during the whole wear process, which is helpful to the establishment of new tribological basic theories such as friction and wear mechanism and lubrication theory.

Design/methodology/approach

Mechanical model of powder lubrication is established considering asperity and powder layer, and the influence of adhesion effect on load and friction force is analyzed. The finite difference method is used to solve the above physical model, and the influence of the adhesion effect on load and friction force is analyzed. The total load and friction of the friction pair are composed of two parts: fluid and asperity. Based on the optical in situ observation method to build a test platform. The interface of the adhesion stage was observed by SEM.

Findings

When the film thickness ratio is less than 1, the local damage and diffusion of the powder layer are basically completed and the adhesion stage is entered. At this time, the asperity is not fully loaded, the powder layer is loaded by 50%, the asperity is less loaded, the deformation is small and the possibility of plastic flow is reduced. However, in the adhesion stage, the friction force is basically generated between asperity, and the friction force ratio of the asperity is 80%. Heavy load and surface roughness of the specimen are the necessary conditions for the powder adhesion period.

Practical implications

In this paper, the failure process of the powder layer at the friction interface with different roughness and load is studied based on the optical in situ observation method. Second, the contact surface with the micro-convex body and powder layer is simulated, and the influence of adhesion effect on the mechanical properties of the real contact surface in the process of powder lubrication is analyzed, thus providing theoretical guidance for mechanical processing, workpiece operation and lubrication design.

Originality/value

Mechanical model considering asperities and powder layer powder lubrication was established to analyze the influence of the adhesion effect on load and friction. Based on the optical in situ observation method to build a test platform. The tests found that the failure process of the powder lubricating layer includes five stages: powder complete stage, local failure stage, local failure diffusion stage, powder adhesion stage and complete failure stage.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0322/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Milan Omasta, Martin Ebner, Petr Šperka, Thomas Lohner, Ivan Krupka, Martin Hartl, Bernd-Robert Hoehn and Karsten Stahl

The purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication

Abstract

Purpose

The purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication mechanism is well described in lightly loaded conformal contacts such as journal bearings; however, only a little has been published about the application to highly loaded contacts under elastohydrodynamic lubrication regime (EHL).

Design/methodology/approach

Thin film colorimetric interferometry is used to describe the effect of different operating conditions on lubricant film formation in line contacts.

Findings

Under fully flooded conditions, the effect of porous structure can be mainly traced back to the different elastic properties. When the contact is lubricated only by oil bleeding from the oil-impregnated sintered material, starvation is likely to occur. It is indicated that lubricant film thickness is mainly governed by oil bleeding capacity. The relationship between oil starvation parameters corresponds well with classic starved EHL theory.

Practical implications

To show practical, relevant limitations of the considered self-lubrication system, time tests were conducted. The findings indicate that EHL contact with oil-impregnated sintered material may provide about 40 per cent of fully flooded film thickness.

Originality/value

For the first time, the paper presents results on the EHL film-forming capability of oil-impregnated sintered material by measuring the lubricant film thickness directly. The present paper identifies the phenomena involved, which is necessary for the understanding of the behavior of this complex tribological system.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Zhongliang Xie, Zhu-shi Rao, Na Ta and Ling Liu

As the companion paper of Part I, this paper aims to get more insight into the essence of lambda and to reveal its nature and role in the transition of lubrication states. Mixed…

Abstract

Purpose

As the companion paper of Part I, this paper aims to get more insight into the essence of lambda and to reveal its nature and role in the transition of lubrication states. Mixed lubrication (ML) model with micro-asperities contacts has been discussed in details in Part I.

Design/methodology/approach

Mimetic algorithm is used to get numerical solutions. Relationships between film thickness ratios and lubrication states transition with different external loads, rotating speeds, radial clearances, elastic modulus, surface hardness and roughness parameters are obtained.

Findings

The characteristic parameters of transitions from boundary lubrication (BL) to ML and ML to hydrodynamic lubrication (HL) are studied to determine how these parameters change with above factors. Finally, the essence and major influencing factors of lambda are summarized for such bearings.

Originality/value

In Part II, the authors believe that the paper presents for the first time: further insight into the essence of the lambda ratio, and its role in the lubrication states transition are given; the determinations of the characteristic parameters of transition from BL to ML and ML to HL are investigated for the first time; the characteristic parameters of transitions from BL to ML and ML to HL are also studied to determine how parameters (external load, rotating speed, radial clearance, elastic modulus, surface hardness and roughness parameter) change with above factors; a summary of the essence and major influencing factors of lambda for such bearings is given.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 August 2018

Guangwu Zhou, Xiongwei Mi, Jiaxu Wang and Rukang Hu

The research purpose of this paper is to obtain a transition process of lubrication condition of water-lubricated rubber bearing (WLRB) by investigating Stribeck curve of WLRB…

Abstract

Purpose

The research purpose of this paper is to obtain a transition process of lubrication condition of water-lubricated rubber bearing (WLRB) by investigating Stribeck curve of WLRB with either straight grooves or spiral grooves using a comparison experiment and providing guidance for structure optimization and application extension of WLRB.

Design/methodology/approach

This study tested the Stribeck curve of WLRB with either straight or spiral grooves using a comparison experiment; the variables used are rotary speed and external load.

Findings

Stribeck curves of WLRB with straight or spiral grooves under varied load are obtained with the experiments, and the speed turning points when the lubrication condition of WLRB transit are acquired. Research results indicate that the transition of the speed turning point for lubrication condition of WLRB with spiral grooves is smaller than that of WLRB with straight grooves. Besides, it was found that within the whole speed range, the friction coefficient of WLRB with straight grooves decreases with the increase in load under the same speed. However, Stribeck curves of WLRB with spiral grooves show that the coefficient increases first and then decreases with the increase in load and finally comes to a steady value. Under the same rotary speed and external load, the friction coefficient of WLRB with spiral grooves is smaller than that of WLRB with straight grooves, claiming that the WLRB with spiral grooves has better lubrication properties.

Originality/value

By testing the Stribeck curve of WLRB with straight grooves or spiral grooves using the comparison experiment, lubrication properties of the WLRB are obtained. The transition mechanism of the lubrication condition for WLRB is acquired, revealing the effects of speed and load on the lubrication property. The research offers a scientific basis for the structure optimization of WLRB.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2014

You-Qiang Wang, Xiu-Jiang Shi and Li-Jing Zhang

Water-lubricated rubber bearing is one of the most appropriate bearings for underwater use. The most popular design used widely today is the straight fluted rubber bearing. The…

Abstract

Purpose

Water-lubricated rubber bearing is one of the most appropriate bearings for underwater use. The most popular design used widely today is the straight fluted rubber bearing. The special configuration leads to partial hydrodynamic lubrication and low load capacity. A new bearing bush structure with two cavities which is favorable for constructing continuous hydrodynamic lubrication was designed and studied. The paper aims to discuss these issues.

Design/methodology/approach

A new bearing bush structure with two cavities which is favorable for constructing continuous hydrodynamic lubrication was designed. The apparatus for studying the tribological behaviors of the two types of water-lubricated rubber bearings has been devised and established in the paper. The experimental studies on the tribological properties of the rubber bearings have been conducted under different loads and velocities. The eccentricity ratio of the new structure rubber bearing with two cavities was measured in experiment and the load capacity was calculated by numerical simulation.

Findings

The experimental results show that the friction coefficient decreases with increasing velocity; the friction coefficient increases sharply with the rising temperature, the friction coefficient increases at first and then decreases with increasing load for fluted rubber bearings. The numerical results were in good agreement with the experimental results. The numerical results show that complete hydrodynamic lubrication can be formed in the new designed rubber bearing with two cavities. The experimental and numerical results all indicate that there is an appropriate bearing clearance which the friction coefficient is minimum and the load capacity is maximum.

Originality/value

A new bearing bush structure with two cavities which is beneficial to constructing continuous hydrodynamic lubrication film was designed. A new apparatus for studying the tribological behaviors of the two types of water-lubricated rubber bearings has been devised and established. Experimental and numerical study on the new structure rubber bearing were conducted in the paper.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 November 1958

T.M. BIRCHALL and A.I.W. MOORE

A series of investigations is being carried out by the Production Engineering Research Association (PERA) which are aimed at providing design data for the slideways of machine…

Abstract

A series of investigations is being carried out by the Production Engineering Research Association (PERA) which are aimed at providing design data for the slideways of machine tools. The first part of the work which is summarised here was carried out with the general object of determining the effect of type of surface (i.e. hand scraped, periphery ground and cup ground), lubricant viscosity and load on the lubrication conditions (i.e. boundary, mixed or fluid film) that occur between flat surfaces under substantially parallel sliding conditions. Of special interest were the effects of these factors on kinetic and static friction, stick‐slip and the onset of full fluid film lubrication.

Details

Industrial Lubrication and Tribology, vol. 10 no. 11
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 29 June 2018

Zeqi Jiang, Jianhua Fang, Fei Chen, Boshui Chen and Kecheng Gu

This paper aims at understanding tribological properties of lubricating oils doped with zinc dithiophosphate(ZDDP) with and without electromagnetic field impact.

Abstract

Purpose

This paper aims at understanding tribological properties of lubricating oils doped with zinc dithiophosphate(ZDDP) with and without electromagnetic field impact.

Design/methodology/approach

The friction and wear properties of the oils formulated with zinc butyloctyl dithiophosphate (T202) or zinc dioctyl dithiophosphate (T203) under electromagnetic field or nonelectromagnetic field were evaluated on a modified four-ball tribotester. The characteristics of the worn surfaces obtained from electromagnetic or nonelectromagnetic field conditions were analyzed by scanning electronic microscopy, energy dispersive spectrometer and X-ray photoelectron spectroscopy. This paper focuses on understanding influence of electromagnetic field on lubrication effect of the ZDDP-formulated oils.

Findings

The electromagnetic field could effectively facilitate anti-wear and friction-reducing properties of the oils doped with T202 or T203 as compared to those without electromagnetism affection, and the T203-doped oils were more susceptible to the electromagnetic field. The improvement of anti-wear and friction-reducing abilities of the tested oils were mainly attributed to the promoted tribochemical reactions and the modification of the worn surfaces (forming Zn-Fe solid solution) induced by the electromagnetic field.

Originality/value

This paper has revealed that tribological performances of ZDDP-doped oils could be improved by the electromagnetic field and discussed its lubrication mechanisms. Investigating tribological properties of additives from the viewpoint of electromagnetics is a new attempt, which has significance not only for the choose and designing of additives in electromagnetic condition but also for development of tribological theories and practices.

Article
Publication date: 17 April 2024

Jian Sun, Zhanshuai Fan, Yi Yang, Chengzhi Li, Nan Tu, Jian Chen and Hailin Lu

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low…

Abstract

Purpose

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low hardness and strength of the surface of aluminum alloys are the main factors that limit their applications. The purpose of this study is to obtain a composite coating with high hardness and lubricating properties by applying GO–PVA over MAO coating.

Design/methodology/approach

A pulsed bipolar power supply was used as power supply to prepare the micro-arc oxidation (MAO) coating on 6061 aluminum sample. Then a graphene oxide-polyvinyl alcohol (GO–PVA) composite coating was prepared on MAO coating for subsequent experiments. Samples were characterized by Fourier infrared spectroscopy, X-ray diffraction, Raman spectroscopy and thermogravimetric analysis. The friction test is carried out by the relative movement of the copper ball and the aluminum disk on the friction tester.

Findings

Results showed that the friction coefficient of MAO samples was reduced by 80% after treated with GO–PVA composite film.

Originality/value

This research has made a certain contribution to the surface hardness and tribological issues involved in the lightweight design of aluminum alloys.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0427/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 2000