Search results

1 – 10 of over 1000
Article
Publication date: 3 June 2014

Tiedan Chen, Yanqiu Xia, Zhilu Liu and Zeyun Wang

The mixture of attapulgite and bentonite was used as a thickener, and polyalphaolefin was used as the base oil to prepare the new lubricating grease. Some solid particles such as…

Abstract

Purpose

The mixture of attapulgite and bentonite was used as a thickener, and polyalphaolefin was used as the base oil to prepare the new lubricating grease. Some solid particles such as Polytetrafluoroethene (PTFE), MoS2, nano-calcium carbonate and graphite were added in the new lubricating grease as anti-wear additives to investigate the tribological sensitivity.

Design/methodology/approach

The new lubricating grease was evaluated by optimol-SRV reciprocating friction and wear tester, and the wear volumes were determined using a MicroXAM-3D. At the same time, the dropping point and the cone penetration were investigated and analyzed. The tribological properties of the new lubricating grease and the sensitivity of some solid lubricating additives to the new lubricating base grease were investigated; pure organic-bentonite and pure organic-attapulgite base grease were used as contrast.

Findings

The new lubricating grease based on the surface-modified bentonite/attapulgite clay base grease was synthesized with a relatively high dropping point, and the mass ratio is 25/75 bentonite/attapulgite clay base grease, having a better tribological performance. MoS2 was used as an anti-wear additive that has good tribological sensitivity to the new lubricating base grease.

Originality/value

The main innovative thought of this work lies in the mixture of attapulgite and bentonite used as thickener. A relevant report is not available at present.

Details

Industrial Lubrication and Tribology, vol. 66 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2008

M.A. Delgado, J.M. Franco and E. Kuhn

The aim of this work is to investigate the relationship among rheology, tribology and traditional standardized technological parameters of lithium lubricating greases.

Abstract

Purpose

The aim of this work is to investigate the relationship among rheology, tribology and traditional standardized technological parameters of lithium lubricating greases.

Design/methodology/approach

Lubricating greases having the same composition but differing in processing protocols have been manufactured and characterized in order to isolate the rheological behaviour from the formulation.

Findings

Some successful empirical correlations between rheological (viscous and viscoelastic) and technological standardized parameters, with the friction factor obtained from a ball‐disc tribometer, have been established in order to elucidate the role of the rheological behaviour of lubricating greases on the friction process. In addition to this, an energetic evaluation of the structural degradation of greases during the friction process has been carried out by performing stress‐growth experiments. Thus, the storage energy density, which is related to the grease capacity to accumulate energy in the elastic deformation, and the limiting energy density, which represents the dissipation of energy in the flow process, have been satisfactorily correlated with the friction factor.

Research limitations/implications

The complex rheological behaviour of lubricating greases, the extreme deformations and the high‐shear stresses resulting in a tribological contact imply that it is difficult to develop a model to describe their behaviour in an elastohydrodynamic lubricating contact.

Originality/value

This paper provides a resource of practical data to be applied in tribological systems.

Details

Industrial Lubrication and Tribology, vol. 60 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 June 2009

Bao Jiusheng, Zhu Zhencai, Yin Yan and Liu Shujin

The purpose of this paper is to prepare a novel nano magnetic grease with favorable lubricating performance; to contrast the tribology performance of the magnetic grease with the…

Abstract

Purpose

The purpose of this paper is to prepare a novel nano magnetic grease with favorable lubricating performance; to contrast the tribology performance of the magnetic grease with the original grease, and to find the lubricating mechanism of the magnetic grease.

Design/methodology/approach

The nano Fe3O4 magnetic fluids are added into the general urea grease to synthesize the nano magnetic grease. Tribology performance tests of the magnetic grease and the original grease are contrasted on a MMW‐1 four‐ball tester. Based on three kinds of effects caused by the nano magnetic fluids, the lubricating mechanism of the magnetic grease is discussed.

Findings

Nano magnetic grease with favorable lubricating performance can be synthesized by adding the nano Fe3O4 magnetic fluids into the general urea grease. The nano magnetic grease has better lubricating performance and more steady bearing capability than the original grease, and is especially available for the lubricating of equipment with high speed and heavy load. The performance improvement of the magnetic grease is owing to the interactions of three kinds of effects as follows: the viscosity increasing effect, the micro‐rolling effect, and the friction weakening effect, which are all caused by the nano magnetic fluids added into the grease.

Originality/value

The paper documents that the nano Fe3O4 magnetic fluids added into the urea grease to synthesize a novel nano magnetic grease has been proved to have quite favorable lubricating performance by the tribology experiments, and the lubricating mechanism of the magnetic grease is also discussed.

Details

Industrial Lubrication and Tribology, vol. 61 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Fei Yan, Ziyu Wang, Yuchen Du, Shijie Su, Yan Zheng and Qinfeng Li

This paper aims to investigate the flow characteristics of lubricating grease in extremely cold weather in which it is difficult to convey the grease due to a huge pressure drop.

Abstract

Purpose

This paper aims to investigate the flow characteristics of lubricating grease in extremely cold weather in which it is difficult to convey the grease due to a huge pressure drop.

Design/methodology/approach

The rheological behavior of grease at various temperatures is studied by a rotary rheometer to determine the constitutive equation of lubricating grease. Based on the Herschel–Bulkley (H–B) model, the flow pattern of grease is then simulated by computational fluid dynamics and compared with the test results.

Findings

The yield stress increased dramatically when the shear rate was less than 1s−1 in the rheological experiments of continuous shear mode, and the phenomenon was more significant with the decrease in temperature. The rheological data obtained from the continuous shear mode agrees with the H–B equation after the shear thinned. In extremely cold conditions, there is a large yield stress in the lubricating grease; the numerical results show that the viscosity of lubricating grease increased with an increase in temperature, and the viscosity and velocity of lubricating grease showed uneven distribution leading to difficulty of lubricating grease delivery.

Originality/value

This paper focuses on the flow characteristics of lubricating grease in extremely cold area conditions which is studied rarely. In addition, the continuous shear model and oscillatory model are combined to establish the constitutive equations. Experiment and numerical simulation method are all used by establishing the H–B models.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 September 2011

R. Sánchez, M. Fiedler, E. Kuhn and J.M. Franco

The aim of this paper is to characterize some selected formulations based on castor oil and a variety of biogenic thickeners from a tribological point of view and compare them…

Abstract

Purpose

The aim of this paper is to characterize some selected formulations based on castor oil and a variety of biogenic thickeners from a tribological point of view and compare them with some traditional lithium greases.

Design/methodology/approach

The evolution of the friction coefficient in several tribological tests performed using several ball‐on‐disc configurations and coupling materials was monitored for the different oleogels proposed as biodegradable lubricating greases. Both a rotational ball‐on‐disc classical tribometer designed at MuT laboratory and a nanotribometer were used in rotational and oscillatory modes.

Findings

Generally, the use of castor oil‐based formulations potentially applicable as biodegradable lubricating greases provides similar or lower values of the friction coefficient than traditional lithium greases, depending on the nature of thickener agent employed and tribological contact. In all cases, biodegradable formulations provide significantly lower values of the friction coefficient in tribological tests performed in the oscillatory mode. Weak oleogels like those thickened with glyceryl and sorbitan monostearates or acylated chitosan, provide the lowest values of the friction coefficient in every type of configuration or frictional test analysed. Biogrease formulations containing cellulose or chitin derivatives as thickener agents generally yield higher values of the friction coefficient, which may be comparable to those obtained with the reference lithium greases depending on the thickener and tribological configuration. In frictional tests performed in the rotational mode, the inclusion of ethyl cellulose in the formulation yields high values of the friction coefficient, which was attributed to the castor oil viscosity modification exerted by this additive. Wear results depend on the balance between the frictional behaviour, especially in the initial transient regime, and oleogel mechanical stability.

Practical implications

This investigation proposes different new alternatives to replace the traditional thickener agent in lubricating greases with others based on renewable resources in order to obtain a completely biodegradable formulation for different industrial applications.

Originality/value

This paper provides a resource of new practical friction coefficient data as well as a comparative analysis of the tribological response of these new formulations based on biogenic thickeners and other traditional lithium greases.

Details

Industrial Lubrication and Tribology, vol. 63 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 August 2014

Liu Hongtao, Ji Hongmin, Hong Haiping and Hammad Younes

The purposes of this paper are to prepare the carbon nanotube (CNT) grease, to contrast the tribology properties of the CNT grease with the original grease and to find the…

Abstract

Purpose

The purposes of this paper are to prepare the carbon nanotube (CNT) grease, to contrast the tribology properties of the CNT grease with the original grease and to find the lubricating mechanism of the CNT grease.

Design/methodology/approach

The CNTs (single-wall and multi-wall) are added into the polyalphaolefin oils (DURASYN_166) to form stable and homogeneous CNT grease with potential heat transfer, conductive and lubricative properties. The friction of this new type of CNT grease was determined by wear experiments under three conditions: dry friction, with the base oil grease and with the CNT grease.

Findings

The research is about the tribological properties of CNT greases; it shows better lubricating performance and wear resistance than the base oil grease. The performance improvement of CNT grease is owing to the unique hexagonal structure and the high thermal conductivity of CNTs.

Originality/value

The paper documents that CNTs can obviously improve the lubricating effect of grease, and the lubricating mechanism of the CNT grease is also discussed.

Details

Industrial Lubrication and Tribology, vol. 66 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1957

Previous work has suggested that the adhesion between oil and metallic surfaces of an engine could be an important factor in determining crankcase cleanliness. It can be shown…

Abstract

Previous work has suggested that the adhesion between oil and metallic surfaces of an engine could be an important factor in determining crankcase cleanliness. It can be shown that it is only necessary to measure the spreading pressure of an oil on metal in order to get a direct measure of the work of adhesion, Surface tensions of lubrictaing oils vary very little and it can be assumed that the critical film pressure (C.F.P.) obtained with a given apparatus is an acceptable measure of the work of adhesion as well as of the spreading pressure. Oils of similar properties may vary tenfold in their C.F.P's. The addition of additives influences the spreading pressure, the largest increments in C.F.P. being given by dispersant and detergent additives.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 13 November 2017

Misael Lopez-Ramirez, Rene J. Romero-Troncoso, Daniel Moriningo-Sotelo, Oscar Duque-Perez, David Camarena-Martinez and Arturo Garcia-Perez

About 13 to 44 per cent of motor faults are caused by bearing failures in induction motors (IMs), where lubrication plays a significant role in maintaining rotating equipment…

204

Abstract

Purpose

About 13 to 44 per cent of motor faults are caused by bearing failures in induction motors (IMs), where lubrication plays a significant role in maintaining rotating equipment because it minimizes friction and prevents wear by separating parts that move next to each other, and more than 35 per cent of bearing failures can be attributed to improper lubrication. An excessive amount of grease causes the rollers or balls to slide along the race instead of turning, and the grease will actually churn. This churning action will eventually wear down the base oil of the grease and all that will be left to lubricate the bearing is a thickener system with little or no lubricating properties. The heat generated from the churning, insufficient lubricating oil will begin to harden the grease, and this will prevent any new grease added to the bearing from reaching the rolling elements, with the consequence of bearing failure and equipment downtime. Regarding the case of grease excess in bearings, this case has not been sufficiently studied. This work aims to present an effective methodology applied to the detection and automatic classification of mechanical bearing faults and bearing excessively lubricated conditions in an IM through the Margenau-Hill distribution (MHD) and artificial neural networks (ANNs), where the obtained results demonstrate the correct classification of the studied cases.

Design/methodology/approach

This work proposed an effective methodology applied to the detection and automatic classification of mechanical bearing faults and bearing excessively lubricated conditions in an IM through the MHD and ANNs.

Findings

In this paper, three cases of study for a bearing in an IM are studied, detected and classified correctly by combining some methods. The marginal frequency is obtained from the MHD, which in turn is achieved from the stator current signal, and a total of six features are estimated from the power spectrum, and these features are forwarded to the designed ANN with three output neurons, where each one represents a condition in the IM: healthy bearing, mechanical bearing fault and excessively lubricated bearing.

Practical implications

The proposed methodology can be applied to other applications; it could be useful to use a time–frequency representation through the MHD for obtaining the energy density distribution of the signal frequency components through time for analysis, evaluation and identification of faults or conditions in the IM for example; therefore, the proposed methodology has a generalized nature that allows its application for detecting other conditions or even multiple conditions under different working conditions by a proper calibration.

Originality/value

The lubrication plays a significant role in maintaining rotating equipment because it minimizes friction and prevents wear by separating parts that move next to each other, and more than 35 per cent of bearing failures can be attributed to improper lubrication and it negatively affects the efficiency of the motor, resulting in higher operating costs. Therefore, in this work, a new methodology is proposed for the detection and automatic classification of mechanical bearing faults and bearing excessively lubricated conditions in an IM through the MHD and ANNs. The proposed methodology uses a total of six features estimated from the power spectrum, and these features are sent to the designed ANN with three output neurons, where each one represents a condition in the IM: healthy bearing, mechanical bearing fault and excessively lubricated bearing. From the obtained results, it was demonstrated that the proposed approach achieves higher classification performance, compared to short-time Fourier transform, Gabor transform and Wigner-Ville distribution methods, allowing to identify mechanical bearing faults and bearing excessively lubricated conditions in an IM, with a remarkable 100 per cent effectiveness during classification for treated cases. Also, the proposed methodology has a generalized nature that allows its application for detecting other conditions or even multiple conditions under different working conditions by a proper calibration.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2023

Jiabao Pan, Rui Li and Ao Wang

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Abstract

Purpose

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Design/methodology/approach

Nano magnetorheological grease was prepared via a thermal water bath with stirring. The lubricating properties of the grease were investigated at different temperatures. Then the lubricity of the prepared nano magnetorheological grease was investigated under the effect of thermomagnetic coupling.

Findings

As the temperature rises, the coefficient of friction of grease lubrication gradually increases, surface wear gradually increases and lubrication performance gradually decreases. Compared with grease, magnetorheological grease has a decreased coefficient of friction and enhanced lubrication effect under the action of a magnetic field at different temperatures.

Originality/value

A lubrication method using a magnetic field to reduce the effect of temperature is established, thereby providing new ideas for lubrication design under a wide range of temperature conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 September 2011

Liu Lei and Sun Hongwei

Modern technology is giving some new requirements for the lubricating grease, and there are also some weaknesses for the existing diurea grease, especially its lower anti‐shear…

393

Abstract

Purpose

Modern technology is giving some new requirements for the lubricating grease, and there are also some weaknesses for the existing diurea grease, especially its lower anti‐shear stability. This paper aims to address this issue. In this work, in order to meet the new industrial requirements and improve the weaknesses of diurea grease, the tetraurea grease has been synthesized.

Design/methodology/approach

Tetraurea grease was synthesized by multi‐steps, characterized by FT‐IR, NMR, ESI‐MS. The properties were evaluated by the ASTM method, such as dropping point, penetration, oil separation and shear stability, as well as four‐ball machine experiment.

Findings

The result shows that tetraurea grease is indeed synthesized successfully and it has a better performance than the existing diurea grease, the main properties of it have been increased, such as high‐temperature performance, structural stability, anti‐shear stability and extreme pressure performance.

Originality/value

This enriches the kinds of polyurea grease. Enhanced lubricating grease performance would have better industrial prospects, and a larger application field than existing diurea grease.

Details

Industrial Lubrication and Tribology, vol. 63 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000