Search results

1 – 10 of over 2000
Article
Publication date: 8 October 2018

Xiaoxue Li, Kang Yang, Hongru Ma, Haibo Lin, Yukun Han and Qiang He

The main aim of this paper was to study the self-lubricating behavior and failure mechanism of silver-rich solid film for in-depth analyzing of the friction and wear property of…

Abstract

Purpose

The main aim of this paper was to study the self-lubricating behavior and failure mechanism of silver-rich solid film for in-depth analyzing of the friction and wear property of TiAl-10 wt. per cent Ag self-lubricating composite.

Design/methodology/approach

The friction and wear property of TiAl-10 wt. per cent Ag self-lubricating composite sliding against Si3N4 ball was tested under the testing conditions of ball-on-disk wear system. Field emission scanning electron microscopy and electron probe microanalyzer were used to analyze the surface morphology of silver-rich solid film. The main element contents were tested by energy dispersive spectroscopy. Silver phase on wear scar could be well identified using X-ray photo-electron spectroscopy. The theory calculation of shearing stress on wear scar was executed to discuss the local failure mechanism of silver-rich solid film. The lubricating role of silver was also discussed to analyze the anti-friction and anti-wear behavior of silver-rich solid film.

Findings

The friction coefficients and wear rates of TASC gradually reduced at 0-65 min, and approached to small values (0.31 in friction coefficient and 3.10×104 mm3N-1m-1 in wear rate) at 65-75 min. The excellent friction and wear behavior of TASC was mainly attributed to the lubricating property of silver-rich film at 65-75 min. At 12→20 N, surface shearing stress increased up to 146.31 MPa, and exceeded more than the shearing strength (125 MPa) of silver-rich film, which caused the propagating of fatigue crack and the destroying of silver-rich film, leading to high friction and severe wear.

Originality/value

It is important that the self-lubricating behavior and local failure of solid film is explored for further understanding the friction and wear property of TiAl alloys.

Article
Publication date: 12 September 2016

Kaiyue Li, Guoding Chen and Deng Liu

The analysis of lubricating properties and efficiency is important for aviation high-speed gear. So far, the project of lubricating properties and efficiency are processing under…

Abstract

Purpose

The analysis of lubricating properties and efficiency is important for aviation high-speed gear. So far, the project of lubricating properties and efficiency are processing under the condition of a given lubricating state, which is still depending on practical experience. This paper aims to mostly focus on the analysis of given lubricating state but lost sight of the relevance of lubrication parameters and lubricating state, which not only makes the analysis of aviation high-speed gear transmission and efficiency fail to trace to practical situation but also has an adverse effect on the reliance and validity of the project.

Design/methodology/approach

Based on this, the numerical model of spraying oil and oil film spreading is established, and the quantitative relationship between spray lubrication parameters and spreading characteristics of oil film is studied. According to the geometric and mechanical conditions of meshing points and taking the influence of rich-oil/starved-oil lubrication and roughness of teeth surface into consideration, corrected film thickness under condition of elasto-hydrodynamic lubrication and lubricating state of mesh points are analyzed. On this basis, power consumption and efficiency of gear transmission are also calculated by figuring out the solid friction and oil friction separately.

Findings

Through the research of this thesis, the effect of friction power consumption and efficiency with lubrication parameters is discussed. The effect of lubrication parameters on friction power consumption and efficiency of gear is complex. With the increase of spreading film thickness and film length, the frictional power consumption is less and the efficiency is higher.

Originality/value

This work provides a systematic technological approach to lubrication design and efficiency calculation of aviation high-speed gear transmission, which has remarkable engineering significance for the accurate lubrication design of the aviation mechanical parts.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Jaw-Ren Lin and Li-Ming Chu

The purpose of this paper is to investigate the dynamic characteristics of exponential slider bearings lubricated with a ferrofluid. Because of the development of modern…

Abstract

Purpose

The purpose of this paper is to investigate the dynamic characteristics of exponential slider bearings lubricated with a ferrofluid. Because of the development of modern engineering, the increasing use of ferrofluids in lubrication fields has shown great importance. Understanding the dynamic characteristics of exponential film bearings is helpful for engineers in bearing selection.

Design/methodology/approach

Applying the Shliomis ferrohydrodynamic flow model and considering the squeezing action of bearing pads, a dynamic Reynolds equation is obtained for an exponential film slider bearing lubricated with a ferrofluid in the presence of a transverse magnetic field. Analytical solutions of dynamic characteristics are obtained.

Findings

According to the results, the ferrofluid-lubricated exponential film bearing provides better dynamic stiffness and damping characteristics than the non-ferrofluid ones, especially the bearing operating at higher values of the volume concentration parameter and the magnetic Langevin parameter.

Originality/value

Numerical tables of stiffness and damping coefficients for different values of the volume concentration parameter and the Langevin parameter are also included for engineering references.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 June 2023

Mohamed Abd Alsamieh

The purpose of this paper is to investigate the performance of an ultra-thin film lubricated conjunction through the elastohydrodynamic lubrication of point contacts for various…

Abstract

Purpose

The purpose of this paper is to investigate the performance of an ultra-thin film lubricated conjunction through the elastohydrodynamic lubrication of point contacts for various ridge shapes and sizes located within the contact zone including flat-top, triangle and cosine wave profiles, considering the influence of surface forces of solvation and Van der Waals’ in addition to the hydrodynamic effect to predict an optimum geometric characteristics for surface texture for lubricated conjunctions.

Design/methodology/approach

Surface features are simulated in a variety of sizes and shapes including flat-top, triangle and cosine wave profiles. While estimating the elastic deformation of the contacting surfaces, surface forces of solvation and Van der Waals’ are taken into account. The Reynolds equation is solved using the Newton–Raphson method to get the pressure profile and film thickness including the elastic deformation, and surface feature.

Findings

The geometrical characteristics of the ridge, its placement in relation to the contact zone and its height all have a significant impact on the performance of ultra-thin film lubricated conjunction. When the triangular-shaped ridge is present in contact, it forecasts even sharper peaks in film thickness and pressure. More friction, wear and eventually contact fatigue are brought on by this more acute pressure and film thickness peaks. The flat-top ridge shape shows a better performance for lubricated conjunction where, the minimum film thickness value is comparable to that obtained for the case of a smooth contact surface. This behavior is attributed to the effect of intermolecular force of solvation. An increase in the size of the ridge results in a step increase in the film thickness for different ridge shapes, particularly for the flat-topped ridge pattern.

Originality/value

Evaluation of the performance of elastohydrodynamic lubricated ultra-thin film conjunction related to film thickness and pressure profile for various ridge surface features of different amplitudes, shapes and sizes located through the contact zone considering the influence of surface forces of solvation and Van der Waals’ in addition to the hydrodynamic effect.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0062/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 June 2023

Penggao Zhang, Fei Feng, Xiu Feng and Long Wei

Magnetic fluid has excellent function used as lubricants in bearings and mechanical seals, and the purpose of this study is to investigate the sealing performance in a spiral…

Abstract

Purpose

Magnetic fluid has excellent function used as lubricants in bearings and mechanical seals, and the purpose of this study is to investigate the sealing performance in a spiral groove mechanical seal lubricated by magnetic fluid.

Design/methodology/approach

The sealing characteristic parameters of the lubricating film between the end faces of two sealing rings were calculated based on the Muijderman narrow groove theory for a spiral groove mechanical seal lubricated by magnetic fluid. The film thickness was determined according to the balanced forces on the rotating ring, and the effects of operating conditions, intensity of the magnetic field and diameter of nanoparticles on the sealing characteristics were investigated.

Findings

It has been found that the intensity of magnetic field has a great effect on the viscosity of magnetic fluid, film thickness and friction torque while has a little effect on the mass flux of magnetic fluid. The film thickness, mass flux of magnetic fluid and friction torque increase with the increasing volume fraction, rotating speed and diameter of magnetic nanoparticles in magnetic fluid. The mass flux of magnetic fluid decrease with the increasing closing force, and the friction torque decreases with the increase of media pressure.

Originality/value

The change of intensity of magnetic field can affect the viscosity of magnetic fluid and then changes the sealing performance in a mechanical seal lubricated by magnetic fluid. To reduce the mass flux of magnetic fluid and friction torque, the volume fraction, diameter of solid magnetic particles and film thickness should be 5%–7%, 8–10 nm and 2–9.3 µm, respectively.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2023-0032/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2021

Lu Chen, Chenchen Xu, Mingfei Ma, Wen Wang, Liang Guo and Patrick Wong

The cleaning of food production equipment using cleaning detergents may contaminate the lubricant of the bearings, thereby reducing the bearing service life. The purpose of this…

Abstract

Purpose

The cleaning of food production equipment using cleaning detergents may contaminate the lubricant of the bearings, thereby reducing the bearing service life. The purpose of this paper is to investigate the cause and mechanism of such damage of bearings lubricated by cleaning detergent/water-in-oil emulsions.

Design/methodology/approach

The emulsion was prepared by adding a mixture of cleaning detergent and water in one base oil. A self-designed ball-on-disc optical interference test rig was applied to examine the effect of emulsion on lubrication and wear of bearing contacts under pure sliding conditions.

Findings

The emulsion reduced lubricating film thickness at a relatively low-sliding speed but only when the water concentration (20%) in emulsion was high. Water droplets were trapped around the ball-on-disc contact area under static conditions because of a high capillary force. The emulsion can induce damages on the soft surface in the startup mainly due to the presence of water around the contact.

Originality/value

The basic lubrication behaviour of water/oil emulsions containing cleaning detergent under pure sliding was experimental studied and the mechanism of bearing damage in food production equipment was investigated. Based on the study, the solution to avoid such damage was proposed.

Details

Industrial Lubrication and Tribology, vol. 73 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 2003

Jerry C.T. Su, Hsien‐I You and Jing‐Xain Lai

High‐speed gas‐lubricated porous journal bearings up to 200,000 rpm are analyzed numerically. The effects of rotation speed, bearing eccentricity, permeability and thickness of…

Abstract

High‐speed gas‐lubricated porous journal bearings up to 200,000 rpm are analyzed numerically. The effects of rotation speed, bearing eccentricity, permeability and thickness of the porous wall on bearing load capacity and attitude angle are investigated. The adequate initial conditions are necessary to improve the convergence of the numerical solutions for high rotation speeds. The results show that the hydrodynamic effect of high rotation speed is not as significant in gas‐lubricated film as the effect of bearing eccentricity to increase the load capacity. The results also show that the lower permeability and the thicker wall of the porous bearing produce the higher load capacity.

Details

Industrial Lubrication and Tribology, vol. 55 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 January 2024

Mohamed Abd Alsamieh

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of…

Abstract

Purpose

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of frequency, stroke length and load on film thickness and pressure variation during one operating cycle are discussed. The general tribological behavior of elastohydrodynamic lubrication during reciprocating motion is explained.

Design/methodology/approach

The system of equations of Reynolds, film thickness considering surface deformation and load balance equations are solved using the Newton-Raphson technique with the Gauss-Seidel iteration method. Numerical solutions were performed with a sinusoidal contact surface velocity to simulate reciprocating elastohydrodynamics. The methodology is validated using historical experimental measurements/observations and numerical predictions from other researchers.

Findings

The numerical results showed that the change in oil film during a stroke is controlled by both wedge and squeeze effects. When the surface velocity is zero at the stroke end, the squeeze effect is most noticeable. As the frequency increases, the general trend of central and minimum film thickness increases. With the same entraining speed but different stroke lengths, the properties of the oil film differ from one another, with an increase in stroke length leading to a reduction in film thickness. Finally, the numerical results showed that the overall film thickness decreases with increasing load.

Originality/value

General tribological behaviors of elastohydrodynamic lubricating point contact, represented by pressure and film thickness variations over time and profiles, are analyzed under reciprocating motion during one working cycle to show the effects of frequency, stroke length and applied load.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 January 2018

Jianmei Wang, Zhixiong Li, Sadoughi Mohammadkazem, Min Cai, Jianfeng Kang and Yanan Zhang

The stability characteristics of an oil film directly influence the safety and service life of mill oil-film bearings. However, very limited work has been done to address the…

Abstract

Purpose

The stability characteristics of an oil film directly influence the safety and service life of mill oil-film bearings. However, very limited work has been done to address the stability characteristics of mill oil-film bearings. To this end, this paper aims to investigate the stability characteristics of mill oil-film bearings through theoretical and experimental analysis.

Design/methodology/approach

For the first time, a special designed experiment platform was developed to investigate the stability characteristics of mill oil-film bearings. In addition, a theoretical model of lubricating film of the tested bearings was established to analyze the oil-film stability. The theoretical results were compared with the experimental results.

Findings

The comparison results demonstrate that the critical influential factors on the bearing stability were the eccentricity ratio and the ratio of bearing length to diameter. The mill bearing was likely to be unstable under a small load and at a high rotational speed.

Practical implications

The paper includes implications for suitable operation conditions in practical use of mill oil-film bearings.

Originality/value

This paper fulfills an identified need to investigate oil-film stability of mill bearings for practical applications.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 2000