Search results

1 – 10 of 585
Article
Publication date: 18 April 2017

Hongxiang Tang, Yuhui Guan, Xue Zhang and Degao Zou

This paper aims to develop a finite element analysis strategy, which is suitable for the analysis of progressive failure that occurs in pressure-dependent materials in practical…

Abstract

Purpose

This paper aims to develop a finite element analysis strategy, which is suitable for the analysis of progressive failure that occurs in pressure-dependent materials in practical engineering problems.

Design/methodology/approach

The numerical difficulties stemming from the strain-softening behaviour of the frictional material, which is represented by a non-associated Drucker–Prager material model, is tackled using the Cosserat continuum theory, while the mixed finite element formulation based on Hu–Washizu variational principle is adopted to allow the utilization of low-order finite elements.

Findings

The effectiveness and robustness of the low-order finite element are verified, and the simulation for a real-world landslide which occurred at the upstream side of Carsington embankment in Derbyshire reconfirms the advantages of the developed elastoplastic Cosserat continuum scheme in capturing the entire progressive failure process when the strain-softening and the non-associated plastic law are involved.

Originality/value

The permit of using low-order finite elements is of great importance to enhance computational efficiency for analysing large-scale engineering problems. The case study reconfirms the advantages of the developed elastoplastic Cosserat continuum scheme in capturing the entire progressive failure process when the strain-softening and the non-associated plastic law are involved.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 October 2011

V.P. Vallala, J.N. Reddy and K.S. Surana

Most studies of power‐law fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of…

Abstract

Purpose

Most studies of power‐law fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of power‐law fluids have not been explored yet. Also, there has been no study of the weak‐form Galerkin formulation using the reduced integration penalty method (RIP) for power‐law fluids. Based on these observations, the purpose of this paper is to fulfill the two‐fold objective of formulating the least‐squares finite element model for power‐law fluids, and the weak‐form RIP Galerkin model of power‐law fluids, and compare it with the least‐squares finite element model.

Design/methodology/approach

For least‐squares finite element model, the original governing partial differential equations are transformed into an equivalent first‐order system by introducing additional independent variables, and then formulating the least‐squares model based on the lower‐order system. For RIP Galerkin model, the penalty function method is used to reformulate the original problem as a variational problem subjected to a constraint that is satisfied in a least‐squares (i.e. approximate) sense. The advantage of the constrained problem is that the pressure variable does not appear in the formulation.

Findings

The non‐Newtonian fluids require higher‐order polynomial approximation functions and higher‐order Gaussian quadrature compared to Newtonian fluids. There is some tangible effect of linearization before and after minimization on the accuracy of the solution, which is more pronounced for lower power‐law indices compared to higher power‐law indices. The case of linearization before minimization converges at a faster rate compared to the case of linearization after minimization. There is slight locking that causes the matrices to be ill‐conditioned especially for lower values of power‐law indices. Also, the results obtained with RIP penalty model are equally good at higher values of penalty parameters.

Originality/value

Vorticity‐based least‐squares finite element models are developed for power‐law fluids and effects of linearizations are explored. Also, the weak‐form RIP Galerkin model is developed.

Article
Publication date: 3 October 2016

Zhou Lei, Esteban Rougier, Earl E. Knight, Luke Frash, James William Carey and Hari Viswanathan

In order to avoid the problem of volumetric locking often encountered when using constant strain tetrahedral finite elements, the purpose of this paper is to present a new…

Abstract

Purpose

In order to avoid the problem of volumetric locking often encountered when using constant strain tetrahedral finite elements, the purpose of this paper is to present a new composite tetrahedron element which is especially designed for the combined finite-discrete element method (FDEM).

Design/methodology/approach

A ten-noded composite tetrahedral (COMPTet) finite element, composed of eight four-noded low order tetrahedrons, has been implemented based on Munjiza’s multiplicative decomposition approach. This approach naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. The problem of volumetric locking is avoided via a selective integration approach that allows for different constitutive components to be evaluated at different integration points.

Findings

A number of validation cases considering different loading and boundary conditions and different materials for the proposed element are presented. A practical application of the use of the COMPTet finite element is presented by quantitative comparison of numerical model results against simple theoretical estimates and results from acrylic fracturing experiments. All of these examples clearly show the capability of the composite element in eliminating volumetric locking.

Originality/value

For this tetrahedral element, the combination of “composite” and “low order sub-element” properties are good choices for FDEM dynamic fracture propagation simulations: in order to eliminate the volumetric locking, only the information from the sub-elements of the composite element are needed which is especially convenient for cases where re-meshing is necessary, and the low order sub-elements will enable robust contact interaction algorithms, which maintains both relatively high computational efficiency and accuracy.

Article
Publication date: 12 July 2013

Sascha Duczek and Ulrich Gabbert

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled…

Abstract

Purpose

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled structures are prone to acoustic emissions, or in shape control approaches to suppress unwanted vibrations. Also in Lamb wave based health monitoring systems piezoelectric patches are applied to excite and to receive ultrasonic waves. The purpose of this paper is to develop a higher order finite element with piezoelectric capabilities in order to simulate smart structures efficiently.

Design/methodology/approach

In the paper the development of a new fully three‐dimensional piezoelectric hexahedral finite element based on the p‐version of the finite element method (FEM) is presented. Hierarchic Legendre polynomials in combination with an anisotropic ansatz space are utilized to derive an electro‐mechanically coupled element. This results in a reduced numerical effort. The suitability of the proposed element is demonstrated using various static and dynamic test examples.

Findings

In the current contribution it is shown that higher order coupled‐field finite elements hold several advantages for smart structure applications. All numerical examples have been found to agree well with previously published results. Furthermore, it is demonstrated that accurate results can be obtained with far fewer degrees of freedom compared to conventional low order finite element approaches. Thus, the proposed finite element can lead to a significant reduction in the overall numerical costs.

Originality/value

To the best of the author's knowledge, no piezoelectric finite element based on the hierarchical‐finiteelement‐method has yet been published in the literature. Thus, the proposed finite element is a step towards a holistic numerical treatment of structural health monitoring (SHM) related problems using p‐version finite elements.

Details

Engineering Computations, vol. 30 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 August 2019

Yongshuai Wang, Md. Abdullah Al Mahbub and Haibiao Zheng

This paper aims to propose a characteristic stabilized finite element method for non-stationary conduction-convection problems.

Abstract

Purpose

This paper aims to propose a characteristic stabilized finite element method for non-stationary conduction-convection problems.

Design/methodology/approach

To avoid difficulty caused by the trilinear term, the authors use the characteristic method to deal with the time derivative term and the advection term. The space discretization adopts the low-order triples (i.e. P1-P1-P1 and P1-P0-P1 triples). As low-order triples do not satisfy inf-sup condition, the authors use the stability technique to overcome this flaw.

Findings

The stability and the convergence analysis shows that the method is stable and has optimal-order error estimates.

Originality/value

Numerical experiments confirm the theoretical analysis and illustrate that the authors’ method is highly effective and reliable, and consumes less CPU time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1999

O.M. Heeres and R. de Borst

An important characteristic of many soil models is a volume change during plastic flow. In computations, this plastic volume change is expressed via a kinematic constraint on the…

Abstract

An important characteristic of many soil models is a volume change during plastic flow. In computations, this plastic volume change is expressed via a kinematic constraint on the possible deformations. Due to this constraint the plane‐strain three‐noded triangular element exhibits locking when plastic deformations occur, under dilatant, contractant and isochoric conditions. It is demonstrated that using the method of enhanced assumed strains by Simol this locking cannot be remedied. For six‐noded wedges and four‐noded and five‐noded pyramids the same conclusion is obtained.

Details

Engineering Computations, vol. 16 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2013

Pavel Karban, František Mach and Ivo Doležel

The paper presents the principal elements of automatic adaptivity built in our 2D software for monolithic solution of multiphysics problems based on a fully adaptive finite element

Abstract

Purpose

The paper presents the principal elements of automatic adaptivity built in our 2D software for monolithic solution of multiphysics problems based on a fully adaptive finite element method of higher order of accuracy. The adaptive techniques are illustrated by appropriate examples.

Design/methodology/approach

Presented are algorithms for realization of the h‐adaptivity, p‐adaptivity, hp‐adaptivity, creation of curvilinear elements for modelling general boundaries and interfaces. Indicated also is the possibility of combining triangular and quadrilateral elements (both classical and curved).

Findings

The presented higher‐order adaptive processes are reliable, robust and lead to a substantial reduction of the degrees of freedom in comparison with the techniques used in low‐order finite element methods. They allow solving examples that are by classical approaches either unsolvable or solvable at a cost of high memory and time of computation.

Research limitations/implications

The adaptive processes described in the paper are still limited to 2D computations. Their computer implementation is highly nontrivial (every physical field in a multiphysics task is generally solved on a different mesh satisfying its specific features) and in 3D the number of possible adaptive steps is many times higher.

Practical implications

The described adaptive techniques may represent a powerful tool for the monolithic solution of complex multiphysics problems.

Originality/value

The presented higher‐order adaptive approach of solution is shown to provide better results than the schemes implemented in professional codes based on low‐order finite element methods. Obtaining the results, moreover, requires less time and computer memory.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3543

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2000

Stefan Doll, Karl Schweizerhof, Ralf Hauptmann and Christof Freischläger

As known from nearly incompressible elasticity, selective reduced integration (SRI) is a simple and effective method of overcoming the volumetric locking problem in 2D and 3D…

Abstract

As known from nearly incompressible elasticity, selective reduced integration (SRI) is a simple and effective method of overcoming the volumetric locking problem in 2D and 3D solid elements. This method of finite elastoviscoplasticity is discussed as are its well‐known limitations. In this context, an isochoric‐volumetric decoupled material behavior is assumed and thus the additive deviatoric‐volumetric decoupling of the consistent algorithmic moduli tensor is essential. By means of several numerical examples, the performance of elements using selective reduced integration is demonstrated and compared to the performance of other elements such as the enhanced assumed strain elements. It is shown that a minor modification, with little numerical effort, leads to rather robust element behaviour. The application of this process to so‐called solid‐shell elements for thin‐walled structures is also discussed.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 October 2019

Lulu Li, Haiyan Su, Jianping Zhao and Xinlong Feng

This paper aims to proposes and analyzes a novel recovery-based posteriori error estimator for the stationary natural-convection problem based on penalized finite element method.

Abstract

Purpose

This paper aims to proposes and analyzes a novel recovery-based posteriori error estimator for the stationary natural-convection problem based on penalized finite element method.

Design/methodology/approach

The optimal error estimates of the penalty FEM are established by using the lower-order finite element pair P1-P0-P1 which does not satisfy the discrete inf-sup condition. Besides, a new recovery type posteriori estimator in view of the gradient recovery and superconvergent theory to deal with the discontinuity of the gradient of numerical solution.

Findings

The stability, accuracy and efficiency of the proposed method are confirmed by several numerical investigations.

Originality/value

The provided reliability and efficiency analysis is shown that the true error can be effectively bounded by the recovery-based error estimator.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 585