Search results

1 – 7 of 7
Article
Publication date: 20 June 2016

Wei Zhu, Chunze Yan, Yunsong Shi, Shifeng Wen, Changjun Han, Chao Cai, Jie Liu and Yusheng Shi

Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of…

1063

Abstract

Purpose

Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of semi-crystalline polymers suitable for SLS are critically limited. Therefore, the purpose of this paper is to investigate the processibility of a new kind of semi-crystalline polypropylene (PP) with low isotacticity for SLS process.

Design/methodology/approach

The SLS processibility of the PP powder, including particle size and shape, sintering window, degree of crystallinity and degradation temperature, was evaluated. Effects of the applied laser energy density on the surface micromorphology, density, tensile strength and thermal properties of SLS-built PP specimens were studied.

Findings

The results show that the PP powder has a nearly spherical shape, smooth surfaces, an appropriate average particle size of 63.6 μm, a broad sintering window of 21 oC and low crystalline degree of 30.4 per cent comparable to that of polyamide-12, a high degradation temperature of 381.8°C and low part bed temperature of 105°C, indicating a very good SLS processibility. The density and the tensile strength first increase with increasing laser energy density until they reach the maximum values of 0.831 g/cm3 and 19.9 MPa, respectively, at the laser energy density of 0.0458 J/mm2, and then decrease when the applied laser energy density continue to increase owing to the degradation of PP powders. The complex PP components have been manufactured by SLS using the optimum parameters, which are strong enough to be directly used as functional parts.

Originality/value

This paper provides a new knowledge for this field that low-isotacticity PPs exhibit good SLS processibility, therefore increasing material types and broadening the application of SLS technology.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 May 2021

Rhys J. Williams, Luke Fox and Candice Majewski

This study aims to demonstrate for the first time that the cheap, commodity polymer, poly(propylene), can be successfully processed using high speed sintering, and that it can be…

Abstract

Purpose

This study aims to demonstrate for the first time that the cheap, commodity polymer, poly(propylene), can be successfully processed using high speed sintering, and that it can be recycled several times through the process, with little to no detriment to either the polymer itself or the parts obtained. This is significant as a step towards the realisation of high speed sintering as a technology for high-volume manufacturing.

Design/methodology/approach

A poly(propylene) powder designed for laser sintering was used to build parts on a high speed sintering machine. The unsintered powder was then collected and reused. Repeating this process allowed creation of seven generations of aged powder. A variety of characterisation techniques were then used to measure polymer, powder and part properties for each generation to discern any effects arising from ageing in the machine.

Findings

It was found that poly(propylene) could be used successfully in high speed sintering, albeit with a low build success rate. Increased powder age was found to correlate to an increase in the build success rate, changes in microscopic and bulk powder properties and improvement to the dimensional accuracy of the parts obtained. By contrast, no discernible correlations were seen between powder age and polymer molecular weight, or between powder age and the tensile properties of parts.

Originality/value

This is the first report of the use of poly(propylene) in high speed sintering. It is also first study regarding powder recyclability in high speed sintering, both in general and using poly(propylene) specifically.

Details

Rapid Prototyping Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 October 2018

Yunsong Shi, Wei Zhu, Chunze Yan, Jinsong Yang and Zhidao Xia

This study aims to report the preparation, selective laser sintering (SLS) processing and properties of a new nylon elastomer powder. The effects of solvent, dissolution…

Abstract

Purpose

This study aims to report the preparation, selective laser sintering (SLS) processing and properties of a new nylon elastomer powder. The effects of solvent, dissolution temperature and time and cooling method and speed on the particle size and morphologies of the prepared nylon elastomer powder are investigated.

Design/methodology/approach

The prepared nylon elastomer power possesses the particle size of around 50 mm and is spherical in shape, indicating that this study provides the feasible dissolution-precipitation process, a distillation cooling method and a suitable solvent to prepare nylon elastomer powders.

Findings

Compared to pure nylon 12, the nylon elastomer has a lower part bed temperature and a wider sintering window for the SLS process. The wider sintering window indicates the better SLS processibility. The lower part bed temperature is beneficial to the recycling of material and the decrease in the requirement of SLS equipment.

Originality/value

The nylon elastomer in this study has a lower part bed temperature and a wider sintering window for the SLS process. The wider sintering window indicates better SLS processibility. The lower part bed temperature is beneficial to the recycling of material and the decrease in the requirement of SLS equipment.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 October 2018

Jibing Chen, Nong Wan, Juying Li and Zhanwen He

Metal green parts fabricated by indirect selective laser sintering (SLS) have lower mechanical properties, and thus, they cannot satisfy practical application. To enhance their…

Abstract

Purpose

Metal green parts fabricated by indirect selective laser sintering (SLS) have lower mechanical properties, and thus, they cannot satisfy practical application. To enhance their performance, two polymer resins were compounded as a modified material to infiltrate into the metal parts by SLS.

Design/methodology/approach

The viscosity and glass-transition temperature were tested by a viscometer and differential scanning calorimetry, respectively. The microstructure and morphology of the interface of parts by polymer resin infiltrated were observed to be using scanning electron microscopy. The tensile strength of sample parts was tested, too. The temperature tolerances of two mass ratio polymer materials were tested and compared by thermo-gravimetric analysis (TGA).

Findings

Compared to those without being polymer material infiltrated, the results of test showed that the tensile strength of the metallic parts is enhanced obviously, about four times. In addition, the analysis of TGA showed that the resin of mass ratio of 2:1 can be endured up to 200° and can be used as infiltrating materials for metal parts.

Originality/value

Therefore, plastic injection mold and function part can be manufactured by this method.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 May 2018

Zhixiong Zhang, Chunbing Wu, Tang Li, Keshan Liang and Yujun Cao

Selective laser melting (SLM) enables the fabrication of lightweight and complex metallic structures. Support structures are required in the SLM process to successfully produce…

Abstract

Purpose

Selective laser melting (SLM) enables the fabrication of lightweight and complex metallic structures. Support structures are required in the SLM process to successfully produce parts. Supports are typically lattice structures, which cost much time and material to manufacture. Besides, the manufacturability of these supports is undesirable, which may impact the quality of parts or even fail the process. The purpose of this paper is to investigate the efficiency and mechanical properties of advanced internal branch support structures for SLM.

Design/methodology/approach

The theoretic weight of a branch support and a lattice support of the same plane were calculated and compared. A group of standard candidates of branch support structures were manufactured by SLM. The weight and scanning time of specimens with different design parameters were compared. Then, these samples were tested using an MTS Insight 30 compression testing machine to study the influence of different support parameters on mechanical strength of the support structures.

Findings

The results show that branch type supports can save material, energy and time used needed for their construction. The yield strength of the branch increases with the branch diameter and inclined branch angle in general. Furthermore, branch supports have a higher strength than traditional lattice supports.

Originality/value

To the best of the authors’ knowledge, this is the first work investigating production efficiency and mechanical properties of branch support structures for SLM. The findings in this work are valuable for development of advanced optimal designs of efficient support structures for SLM process.

Details

Rapid Prototyping Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Barry Haworth, John R. Tyrer and Zhou Zhou

There is a requirement to match selective laser melting (SLM) technologies to a wider range of polymeric materials, as the existing market for SLM powders is dominated by…

Abstract

Purpose

There is a requirement to match selective laser melting (SLM) technologies to a wider range of polymeric materials, as the existing market for SLM powders is dominated by polyamide PA12. Drivers include the tailoring of physical properties to individual applications or cost reduction. Polypropylene (PP) currently has limited use in SLM; so, this paper aims to explore the potential use of PP materials of varying molecular weight (Mw).

Design/methodology/approach

PP polymers of differing Mw were characterised using a range of analytical techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), rotational rheometry and real-time hot-stage (optical) microscopy.

Findings

The techniques are sufficiently sensitive to distinguish Mw effects, notably in terms of material viscosity. The stable sintering region for SLM has been defined clearly. Some success was achieved in melting parts using all grades of PP, including higher Mw grades, which potentially offer improved mechanical performance.

Research limitations/implications

The range of techniques (DSC, oxidative induction time and TGA) form an effective analytical package with which to consider new polymeric materials for SLM.

Practical implications

High-Mw PP polymers, in tape or powder form, have potential use in SLM processes, providing scope to enhance part properties in future.

Originality/value

This is believed to be the first in-depth study noting the influence of PP Mw on important physical performance in a proprietary SLM process, using holographic beam manipulation.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 September 2012

A.D. Drozdov, d J. and C.G. Potarniche

The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene…

Abstract

Purpose

The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene (mPP) with application to lifetime assessment under conditions of creep rupture.

Design/methodology/approach

Three series of experiments are conducted where the mechanical response of mPP is analyzed in tensile tests with various strain rates, relaxation tests with various strains, and creep tests with various stresses at room temperature. A constitutive model is derived for semicrystalline polymers under an arbitrary three‐dimensional deformation with small strains, and its parameters are found fitting the observations.

Findings

Crystalline structure and molecular architecture of polypropylene strongly affect its time‐ and rate‐dependent behavior. In particular, time‐to‐failure of metallocene catalyzed polypropylene under tensile creep noticeably exceeds that of isotactic polypropylene produced by the conventional Ziegler‐Natta catalysis.

Originality/value

Novel stress‐strain relations are developed in viscoelastoplasticity of semi‐crystalline polymers and applied to predict their mechanical behavior in long‐term creep tests.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 7 of 7