Search results

21 – 30 of over 2000
Article
Publication date: 9 April 2024

Kunal Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric

Abstract

Purpose

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric properties of solid materials in real time. The sensor uses a transmission line with a bridge-type structure to measure the differential frequency, which can be used to calculate the dielectric constant of the material being tested. The study aims to establish an empirical relationship between the dielectric properties of the material and the frequency measurements obtained from the sensor.

Design/methodology/approach

In the proposed design, the opposite arm of the bridge transmission line is loaded by DC-SRRs, and the distance between DC-SRRs is optimized to minimize the mutual coupling between them. The DC-SRRs are loaded with the material under test (MUT) to perform differential permittivity sensing. When identical MUT is placed on both resonators, a single transmission zero (notch) is obtained, but non-identical MUTs exhibit two split notches. For the design of differential sensors and comparators based on symmetry disruption, frequency splitting is highly useful.

Findings

The proposed structure is demonstrated using electromagnetic simulation, and a prototype of the proposed sensor is fabricated and experimentally validated to prove the differential sensing principle. Here, the sensor is analyzed for sensitivity by using different MUTs with relative permittivity ranges from 1.006 to 10 and with a fixed dimension of 9 mm × 10 mm ×1.2 mm. It shows a very good average frequency deviation per unit change in permittivity of the MUTs, which is around 743 MHz, and it also exhibits a very high average relative sensitivity and quality factor of around 11.5% and 323, respectively.

Originality/value

The proposed sensor can be used for differential characterization of permittivity and also as a comparator to test the purity of solid dielectric samples. This sensor most importantly strengthens robustness to environmental conditions that cause cross-sensitivity or miscalibration. The accuracy of the measurement is enhanced as compared to conventional single- and double-notch metamaterial-based sensors.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 August 1996

K. Jayaraj, T.E. Noll and K. Blizard

L iguid crystal polymer(LCP) dielectric materials have been used to fabricate surface mount PWBs with acoefficient of thermal expansion matched to leadless ceramic chip carriers…

341

Abstract

L iguid crystal polymer (LCP) dielectric materials have been used to fabricate surface mount PWBs with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology results in self‐reinforcing material with balanced in‐plane mechanical properties. In addition, LCPs possess excellent electrical properties, including a low dielectric constant (∼3) and very low moisture absorption (< 0.02 %). Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. Modelling indicates that the high out‐of‐plane CTE of LCPs does not affect the reliability of the plated‐through‐holes vias. RF characterisation indicates that the material is suitable up to very high frequencies. The material is ideally suited to MCM‐L and PCMCIA applications involving very thin dielectric layers of the LCP.

Details

Circuit World, vol. 22 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 20 January 2012

Shital Patil and Vijaya Puri

The purpose of this paper is to study properties of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films for application in tuned devices.

Abstract

Purpose

The purpose of this paper is to study properties of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films for application in tuned devices.

Design/methodology/approach

The effect of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films overlay of different thickness on Ag thick film microstrip rectangular patch antenna was investigated in the X band (8‐12 GHz). Using Ag thick film microstrip rectangular patch antenna the thick and mixed thick films was characterized by microwave properties such as resonance frequency, amplitude, bandwidth, quality factor and input impedance. Using the resonance frequency the permittivity of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films was measured.

Findings

Cubic structure of single magnesium oxide and monoclinic structure of bismuth oxide was present in mixed thick film. Also the morphology of single thick films was maintained in mixed thick film of magnesium oxide‐bismuth oxide. Due to overlay magnesium oxide and magnesium oxide‐bismuth oxide mixed thick films, change in resonance frequency shifts towards high frequency end was observed. Dielectric constant of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick film calculated from resonance frequency decreased with increase in thickness.

Originality/value

The microwave properties using Ag thick film microstrip patch antenna due to overlay of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films have been reported for the first time. Thickness of overlay dependent tuning of the antenna has been achieved.

Article
Publication date: 1 September 2002

Happy Holden

Microvias or high density interconnects (HDI) printed circuits are now being designed in ever increasing quantities. HDI brings some interesting new solutions to age‐old signal…

Abstract

Microvias or high density interconnects (HDI) printed circuits are now being designed in ever increasing quantities. HDI brings some interesting new solutions to age‐old signal integrity (SI) concerns, and concerns that will grow as rise‐times continue to drop.This article focuses on five major areas of SI concerns—(1) noise: (a) noise‐reflections, (b) noise‐crosstalk, (c) noise‐simultaneous switching; (2) electro‐magnetic interference (EMI); (3) interconnect delays.In each case, HDI offers improvements and alternatives—but it is not a panacea. A couple of “cautions” are listed that can be a major stumbling block to HDI implementation, fortunately, they are not SI based. Important to SI is the materials used in HDI. Although not the focus of this article, the materials selected, as well as the dimensional stack‐up and PCB design rules, will influence SI and electrical performance (impedance, crosstalk and signal conditioning). Miniaturization provided by HDI will be a major contributor to SI performance.Finally, the SI example is also a case study in cost reduction. The “before” and “after” conditions are reviewed to emphasize the cost reduction and “time‐to‐market” advantages of HDI technology.

Details

Circuit World, vol. 28 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 February 1988

J.C. Curtis, K.J. Lodge and D.J. Pedder

This paper looks at the implications of increases in system speed and density for the interconnection system, noting particularly the increased requirements placed on the…

Abstract

This paper looks at the implications of increases in system speed and density for the interconnection system, noting particularly the increased requirements placed on the substrate and tracking system. It reviews the properties required of substrates and the limitations derived from the materials used and the processes needed to put tracks on them. Those areas where these requirements are in conflict are highlighted, including such low technology problems as the limited size availability of substrate prepregs which may limit the tracking density achievable on the newer, more advanced low dielectric materials. Some limitations and trade‐offs are identified.

Details

Circuit World, vol. 14 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 24 December 2021

Reza Kazemi, Mohsen Fallah, Bijan Abbasi and Seyyed Hossein MohseniArmaki

The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR…

Abstract

Purpose

The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR) applications in Ku frequency band.

Design/methodology/approach

A compact design of a rectangular microstrip patch antenna array using multilayered dielectric structure is presented in Ku-band for advanced broadband SAR systems. In this design, stepped pins are used to connect the microstrip feed lines to the radiating patches.

Findings

The simulation and fabrication results of the multilayered antenna and a 1×16-element linear array of the antenna with Taylor amplitude distribution in the feeding network are presented. The antenna element has a 10-dB impedance bandwidth of more than 26%, and the linear array shows reduction in bandwidth percentage (about 15.4%). Thanks to Taylor amplitude tapering, the side lobe level (SLL) of the array is lower than −24 dB. The maximum measured gains of the antenna element and the linear array are 7 and 19.2 dBi at the center frequency, respectively.

Originality/value

In the communication systems, a high gain narrow beamwidth radiation pattern achieved by an array of multiple antenna elements with optimized spacing is a solution to overcome the path loss, atmospheric loss, polarization loss, etc. Also, wideband characteristics and compact size are desirable in satellite and SAR systems. This paper provides the combination of these features by microstrip structures.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 1989

J.R. Paulus

This paper reviews some of the technology trends making it necessary to take the performance of laminate materials into account when designing and fabricating high speed PWBs. It…

Abstract

This paper reviews some of the technology trends making it necessary to take the performance of laminate materials into account when designing and fabricating high speed PWBs. It also reviews the available materials for current matched impedance circuitry and discusses the various combinations of polymer resins and reinforcements used in these applications. Additionally, it provides a look at the new materials technologies being applied to high speed applications and what candidates hold most promise for achieving greater signal speeds via lowered dielectric constant while maintaining the compatibility with existing fabrication processes.

Details

Circuit World, vol. 15 no. 4
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 January 1990

T. Hirakawa, H. Watanabe and K. Nishimura

A new aramid base material for use in laminates to be applied to advanced surface mount technology was developed. A new fibre based on PPDETA (Poly‐p‐phenylene/3,4'‐diphenylether…

Abstract

A new aramid base material for use in laminates to be applied to advanced surface mount technology was developed. A new fibre based on PPDETA (Poly‐p‐phenylene/3,4'‐diphenylether terephthalamide) was found to have negative thermal and hygroscopic expansion coefficients, low ionic impurities and high affinity to epoxy and polyimide resins. The fibre was processed into fabrics and papers to be used as a base material for printed circuit boards for advanced surface mount technology. Impregnation with a new epoxy resin with high purity and high temperature resistance implemented the development of a new laminate with minimal electromigration and high dimensional stability. Thus, a new laminate was developed to be used for LCCC, PGA, COB, TAB, Flip‐Chips and other advanced surface mount technologies. Reliability of the laminate to electromigration between surface conductors, between plated‐through barrels, and between opposed conductors was found to be one of the highest available today. These types of behaviour were related to the high purity and high temperature resistance of both the reinforcement material and the resin. The short life of through‐hole plating in thermal shock was improved by the application of a new plating technology. Application to multilayer boards and laminates with a low dielectric constant is also being investigated.

Details

Soldering & Surface Mount Technology, vol. 2 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 4 October 2011

Cynthia Gomes, Nahum Travitzky, Peter Greil, Wilson Acchar, Hansu Birol, Antonio Pedro Novaes de Oliveira and Dachamir Hotza

This paper seeks to detail the fabrication of a glass‐ceramic substrate, based on the LiO2‐ZrO2‐SiO2‐Al2O3 (LZSA) system, by laminated object manufacturing (LOM) using water‐based…

1058

Abstract

Purpose

This paper seeks to detail the fabrication of a glass‐ceramic substrate, based on the LiO2‐ZrO2‐SiO2‐Al2O3 (LZSA) system, by laminated object manufacturing (LOM) using water‐based cast tapes.

Design/methodology/approach

Small amounts of ZrSiO4 were added to control the thermal expansion coefficient (TEC) of the original glass‐ceramic (LZSA5Zr: LZSA+5 wt% ZrSiO4). In order to verify the influence of the amount and nature of crystalline phases on the thermal and dielectric behavior of the material, LZSA and LZSA5Zr laminates were sintered at 700°C for 30 min and crystallized at either 800 or 850°C for 30 min.

Findings

LZSA laminates (sintered and crystallized at 700 and 800°C, respectively) exhibited a relative density of ∼90 percent, a dielectric constant of 8.39, a dielectric loss tangent of 0.031 and TEC of 5.5×10−6 K−1 (25‐550°C). The addition of 5 wt% ZrSiO4 to original LZSA glass‐ceramics led to a nearly constant TEC value of 6×10−6 K−1 throughout the whole temperature interval (25‐800°C). Dielectric properties of LZSA5Zr did not show any remarkable change when compared to original LZSA.

Originality/value

The thermal, mechanical and electrical properties of LZSA glass‐ceramic laminates fabricated by LOM makes them potential candidates for substrate applications.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 November 1989

A.A. Salman, I. El‐Anwar and M.D.M. Mohamed

The dielectric constant (E′), dielectric loss (E″) and power factor (tan §) were measured for various excess hydroxyl content resins (polyesteramide, alkyd/polyesteramide and…

Abstract

The dielectric constant (E′), dielectric loss (E″) and power factor (tan §) were measured for various excess hydroxyl content resins (polyesteramide, alkyd/polyesteramide and alkyd resins) and also for their corresponding dry films. Measurements were conducted within the frequency band 105 to 107 Hz and temperature range 20–50°C. The various parameters affecting the dielectric behaviour of resin varnishes and their dry films are discussed. Also the effect of ageing at 110°C upon the dielectric behaviour of dry films is another parameter taken into consideration.

Details

Pigment & Resin Technology, vol. 18 no. 11
Type: Research Article
ISSN: 0369-9420

21 – 30 of over 2000