Search results

1 – 10 of 356
Article
Publication date: 10 October 2022

Kurt Wurthmann

This study aims to provide and illustrate the application of a framework for conducting techno-economic analyses (TEA) of early-stage designs for net-zero water and energy

Abstract

Purpose

This study aims to provide and illustrate the application of a framework for conducting techno-economic analyses (TEA) of early-stage designs for net-zero water and energy, single-family homes that meet affordable housing criteria in diverse locations.

Design/methodology/approach

The framework is developed and applied in a case example of a TEA of four designs for achieving net zero-water and energy in an affordable home in Saint Lucie County, Florida.

Findings

Homes built and sold at current market prices, using combinations of well versus rainwater harvesting (RWH) systems and grid-tied versus hybrid solar photovoltaic (PV) systems, can meet affordable housing criteria for moderate-income families, when 30-year fixed-rate mortgages are at 2%–3%. As rates rise to 6%, unless battery costs drop by 40% and 60%, respectively, homes using hybrid solar PV systems combined with well versus RWH systems cease to meet affordable housing criteria. For studied water and electricity usage and 6% interest rates, only well and grid-tied solar PV systems provide water and electricity at costs below current public supply prices.

Originality/value

This article provides a highly adaptable framework for conducting TEAs in diverse locations for designs of individual net-zero water and energy affordable homes and whole subdivisions of such homes. The framework includes a new technique for sizing storage tanks for residential RWH systems and provides a foundation for future research at the intersection of affordable housing development and residential net-zero water and energy systems design.

Details

International Journal of Housing Markets and Analysis, vol. 17 no. 2
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 1 September 2008

Rémi Charron

In recent years, there have been a growing number of projects and initiatives to promote the development and market introduction of low and net-zero energy solar homes and

Abstract

In recent years, there have been a growing number of projects and initiatives to promote the development and market introduction of low and net-zero energy solar homes and communities. These projects integrate active solar technologies to highly efficient houses to achieve very low levels of net-energy consumption. Although a reduction in the energy use of residential buildings can be achieved by relatively simple individual measures, to achieve very high levels of energy savings on a cost effective basis requires the coherent application of several measures, which together optimise the performance of the complete building system. This article examines the design process used to achieve high levels of energy performance in residential buildings. It examines the current design processes for houses used in a number of international initiatives. The research explores how building designs are optimised within the current design processes and discusses how the application of computerised optimisation techniques would provide architects, home-builders, and engineers with a powerful design tool for low and net-zero energy solar buildings.

Details

Open House International, vol. 33 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 1 September 2008

Masa Noguchi and Darragh Collins

Today, Japanese housing manufacturers compete to produce net zero-energy-cost houses that are usually equipped with some renewable energy technologies-e.g. a solar photovoltaic…

Abstract

Today, Japanese housing manufacturers compete to produce net zero-energy-cost houses that are usually equipped with some renewable energy technologies-e.g. a solar photovoltaic electric power generating system, a CO2 refrigerant heat-pump water heater and a combined heat and power system. Interestingly, the manufacturers tend to install these costly renewable technologies as standard equipment rather than options. To initiate and maintenance the sales of their environmentally-friendly houses, the manufacturers bring into effect their quality-oriented production and user-oriented communication approaches. The manufacturers' way to commercialise their industrialised housing to some extent reflects their high cost-performance marketing strategy. This paper somewhat reflects the learning outcomes of the Zero-carbon PV Mass Custom Home Technical Mission to Japan that the first author organised in 2006 and 2007. It is aimed at identifying the manufacturers' essential commercialisation strategies being applied for the niche-marketing of their net zero-energy-cost housing.

Details

Open House International, vol. 33 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 7 December 2021

Ghasson Shabha, Francesca Barber and Paul Laycock

There are 29 million homes in the UK, accounting for 14% of the UK's energy consumption. This is given that UK has one of the highest water and energy demands in Europe which…

Abstract

Purpose

There are 29 million homes in the UK, accounting for 14% of the UK's energy consumption. This is given that UK has one of the highest water and energy demands in Europe which needs to be addressed according to the Committee on Climate Change (CCC). Smart homes technology holds a current perception that it is principally used by “tech-savvy” users with larger budgets. However, smart home technology can be used to control water, heat and energy in the entire house. This paper investigates how smart home technology could be effectively utilised to aid the UK government in meeting climate change targets and to mitigate the environmental impact of a home in use towards reducing carbon emissions.

Design/methodology/approach

Both primary and secondary data were sought to gain insight into the research problem. An epistemological approach to this research is to use interpretivism to analyse data gathered via a semi-structured survey. Two groups of participants were approached: (1) professionals who are deemed knowledgeable about smart home development and implementation and (2) users of smart home technology. A variety of open-ended questions were formulated, allowing participants to elaborate by exploring issues and providing detailed qualitative responses based on their experience in this area which were interpreted quantitatively for clearer analysis.

Findings

With fossil fuel reserves depleting, there is an urgency for renewable, low carbon energy sources to reduce the 5 tonnes annual carbon emissions from a UK household. This requires a multi-faceted and a multimethod approach, relying on the involvement of both the general public and the government in order to be effective. By advancing energy grids to make them more efficient and reliable, concomitant necessitates a drastic change in the way of life and philosophy of homeowners when contemplating a reduction of carbon emissions. If both parties are able to do so, the UK is more likely to reach its 2050 net-zero carbon goal. The presence of a smart meter within the household is equally pivotal. It has a positive effect of reducing the amount of carbon emissions and hence more need to be installed.

Research limitations/implications

Further research is needed using a larger study sample to achieve more accurate and acceptable generalisations about any future course of action. Further investigation on the specifics of smart technology within the UK household is also needed to reduce the energy consumption in order to meet net-zero carbon 2050 targets due to failures of legislation.

Practical implications

For smart homes manufacturers and suppliers, more emphasis should be placed to enhance compatibility and interoperability of appliances and devices using different platform and creating more user's friendly manuals supported by step-by-step visual to support homeowners in the light of the wealth of knowledge base generated over the past few years. For homeowners, more emphasis should be placed on creating online knowledge management platform easily accessible which provide virtual support and technical advice to home owners to deal with any operational and technical issues or IT glitches. Developing technical design online platform for built environment professionals on incorporating smart sensors and environmentally beneficial technology during early design and construction stages towards achieving low to zero carbon homes.

Originality/value

This paper bridges a significant gap in the body of knowledge in term of its scope, theoretical validity and practical applicability, highlighting the impact of using smart home technology on the environment. It provides an insight into how the UK government could utilise smart home technology in order to reduce its carbon emission by identifying the potential link between using smart home technology and environmental sustainability in tackling and mitigating climate change. The findings can be applied to other building types and has the potential to employ aspects of smart home technology in order to manage energy and water usage including but not limited to healthcare, commercial and industrial buildings.

Details

Smart and Sustainable Built Environment, vol. 12 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 1 September 2013

Laura Aelenei, Daniel Aelenei, Helder Gonçalves, Roberto Lollini, Eike Musall, Alessandra Scognamiglio, Eduard Cubi and Massa Noguchi

Net Zero-Energy Buildings (NZEBs) have received increased attention in recent years as a result of constant concerns about energy supply constraints, decreasing energy resources…

Abstract

Net Zero-Energy Buildings (NZEBs) have received increased attention in recent years as a result of constant concerns about energy supply constraints, decreasing energy resources, increasing energy costs and the rising impact of greenhouse gases on world climate. Promoting whole building strategies that employ passive measures together with energy efficient systems and technologies using renewable energy became a European political strategy following the publication of the Energy Performance of Buildings Directive recast in May 2010 by the European Parliament and Council. However designing successful NZEBs represents a challenge because the definitions are somewhat generic while assessment methods and monitoring approaches remain under development and the literature is relatively scarce about the best sets of solutions for different typologies and climates likely to deliver an actual and reliable performance in terms of energy balance (consumed vs generated) on a cost-effective basis. Additionally the lessons learned from existing NZEB examples are relatively scarce. The authors of this paper, who are participants in the IEA SHC Task 40-ECBCS Annex 52, “Towards Net Zero Energy Solar Buildings”, are willing to share insights from on-going research work on some best practice leading NZEB residential buildings. Although there is no standard approach for designing a Net Zero-Energy Building (there are many different possible combinations of passive and efficient active measures, utility equipment and on-site energy generation technologies able to achieve the net-zero energy performance), a close examination of the chosen strategies and the relative performance indicators of the selected case studies reveal that it is possible to achieve zero-energy performance using well known strategies adjusted so as to balance climate driven-demand for space heating/cooling, lighting, ventilation and other energy uses with climate-driven supply from renewable energy resources.

Details

Open House International, vol. 38 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 1 September 2008

Masa Noguchi

In response to the growing demand for zero-energy housing, today's home needs not only to be energy-efficient, but also to provide part of its own energy requirements. The energy

Abstract

In response to the growing demand for zero-energy housing, today's home needs not only to be energy-efficient, but also to provide part of its own energy requirements. The energy efficiency may be improved by applying high thermal performance building envelope and passive energy and environmental systems to housing. Micro-power can be generated through the use of renewable energy technologies. This paper is aimed at providing a comprehensive guideline on the design techniques and approaches to the delivery of net zero-energy healthy housing in view of the ÉcoTerra house, which won the Canadian federal government's EQuilibrium sustainable housing competition. The house was built in Eastman in the province of Quebec and it is currently open to the general public in order to sharpen the consumers' awareness of commercially available net zero-energy healthy housing today.

Details

Open House International, vol. 33 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Book part
Publication date: 6 September 2023

Elaine Conway and Yousuf Kamal

This chapter discusses the global challenge to reduce greenhouse gas (GHGs) emissions to net zero by 2050. It explains what net zero means and how it is calculated, together with…

Abstract

This chapter discusses the global challenge to reduce greenhouse gas (GHGs) emissions to net zero by 2050. It explains what net zero means and how it is calculated, together with some of the debate around the suitability of the target to maintain global warming levels within ‘acceptable’ boundaries. The chapter then presents some of the opportunities and challenges that transitioning towards net zero will pose to countries and their inhabitants, in terms of changes to policies, products, processes and behaviours that will be required to attain the target. It then discusses the need for a strategy to achieve net zero across different sectors of society and provides a few suggestions of tools and concepts that could be adopted to support the changes necessary, such as planning for change, the Sustainable Development Goals (SDGs), integrated reporting and the circular economy. The chapter concludes with a reflection on the need for the net zero target and how it is our collective responsibility to support the challenging transition to net zero for the benefit of all.

Article
Publication date: 15 July 2022

Ruchi Mishra, Rajesh Singh and Kannan Govindan

The purpose of this study is to systematically review the state-of-art literature on the net-zero economy in the field of supply chain management.

2925

Abstract

Purpose

The purpose of this study is to systematically review the state-of-art literature on the net-zero economy in the field of supply chain management.

Design/methodology/approach

A systematic literature review of 79 articles published from 2009 to 2021 has been conducted to minimise the researchers' bias and maximise the reliability and replicability of the study.

Findings

The thematic analysis reveals that studies in the field of net-zero economy have mostly been done on decarbonisation in the supply chain, emission control and life cycle analysis and environmental and energy management. The findings highlight the strong positive association between digitalisation, circular economy and resources optimization practices with net-zero economy goals. The study also addresses the challenges linked with the net-zero economy at the firm and country levels.

Research limitations/implications

Practitioners in companies and academics might find this review valuable as this study reviews, classifies and analyses the studies, outlines the evolution of literature and offers directions for future studies using the theory, methodology and context (TMC) framework.

Originality/value

This is the first study that uses a structured approach to analyse studies done in the net-zero field by assessing publications from 2009 to 2021.

Details

The International Journal of Logistics Management, vol. 34 no. 5
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 5 September 2018

Brian Cody, Wolfgang Loeschnig and Alexander Eberl

The work described below compares three very different residential typologies in terms of their energy performance in operation. The purpose of this paper is to identify the…

2133

Abstract

Purpose

The work described below compares three very different residential typologies in terms of their energy performance in operation. The purpose of this paper is to identify the influence of building typologies and corresponding urban morphologies on operational energy demand and the potential for building integrated energy production.

Design/methodology/approach

Two of the typologies studied are apartment buildings while the third comprises single-family homes located on small plots. An important factor under consideration is the insertion into the respective urban design configuration so that mutual shading of the buildings and the ensuing impact on energy performance is evaluated. Heating and cooling demands, as well as the potential for building-integrated electricity production were investigated for four different European climates in a dynamic thermal simulation environment.

Findings

The results show that the investigated apartment buildings have a lower operational energy demand than the single-family home in all climates. This advantage is most pronounced in cool climate conditions. At the same time the investigated single-family home has the highest potential for building integrated renewable energy production in all climates. This advantage is most pronounced in low latitudes.

Originality/value

The study builds up on generic buildings that are based on a common urban grid and are easily comparable and scalable into whole city districts. Still, these buildings are planned into such detail, that they provide fully functional floor plans and comply with national building regulations. This approach allows us to draw conclusions on the scale of individual buildings and at an urban scale at the same time.

Details

Smart and Sustainable Built Environment, vol. 7 no. 3/4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 23 September 2021

Seyed Sajad Rezaei Nasab, Abbasali Tayefi Nasrabadi, Somayeh Asadi and Seiyed Ali Haj Seiyed Taghia

Due to technological improvement and development of the vehicle-to-home (V2H) concept, electric vehicle (EV) can be considered as an active component of net-zero energy buildings…

Abstract

Purpose

Due to technological improvement and development of the vehicle-to-home (V2H) concept, electric vehicle (EV) can be considered as an active component of net-zero energy buildings (NZEBs). However, to achieve more dependable results, proper energy analysis is needed to take into consideration the stochastic behavior of renewable energy, energy consumption in the building and vehicle use pattern. This study aims to stochastically model a building integrating photovoltaic panels as a microgeneration technology and EVs to meet NZEB requirements.

Design/methodology/approach

First, a multiobjective nondominated sorting genetic algorithm (NSGA-II) was developed to optimize the building energy performance considering panels installed on the façade. Next, a dynamic solution is implemented in MATLAB to stochastically model electricity generation using solar panels as well as building and EV energy consumption. Besides, the Monte Carlo simulation method is used for quantifying the uncertainty of NZEB performance. To investigate the impact of weather on both energy consumption and generation, the model is tested in five different climatic zones in Iran.

Findings

The results show that the stochastic simulation provides building designers with a variety of convenient options to select the best design based on level of confidence and desired budget. Furthermore, economic evaluation signifies that investing in all studied cities is profitable.

Originality/value

Considering the uncertainty in building energy demand and PV power generation as well as EV mobility and the charging–discharging power profile for evaluating building energy performance is the main contribution of this study.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 356