Search results

1 – 10 of over 5000
Article
Publication date: 12 October 2015

Rajneesh Kakar

The purpose of this paper is to deal with the propagation of Love waves in inhomogeneous viscoelastic layer overlying a gravitational half-space. It has been observed velocity of…

Abstract

Purpose

The purpose of this paper is to deal with the propagation of Love waves in inhomogeneous viscoelastic layer overlying a gravitational half-space. It has been observed velocity of Love waves depends on viscosity, gravity, inhomogeneity and initial stress of the layer.

Design/methodology/approach

The dispersion relation for the Love wave in closed form is obtained with Whitaker’s function.

Findings

The effect of various non-dimensional inhomogeneity factors, gravity factor and internal friction on the non-dimensional Love wave velocity has been shown graphically. The authors observed that the dispersion curve of Love wave increases as the inhomogeneity factor increases. It is seen that increment in gravity, inhomogeneity and internal friction decreases the damping phase velocity of Love waves but it is more prominent in case of internal friction.

Originality/value

Surface plot of Love wave reveals that the velocity ratio increases with the increase of non-dimensional phase velocity and non-dimensional wave number. The above results may attract seismologists and geologists.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 August 2017

Abhishek Kumar Singh, Santan Kumar, Dharmender and Shruti Mahto

The purpose of this paper is to theoretically analyze the propagation of Love-type wave in an irregular piezoelectric layer superimposed on an isotropic elastic substrate.

Abstract

Purpose

The purpose of this paper is to theoretically analyze the propagation of Love-type wave in an irregular piezoelectric layer superimposed on an isotropic elastic substrate.

Design/methodology/approach

The perturbation technique and Fourier transform have been applied for the solution procedure of the problem. The closed-form expressions of the dispersion relation have been analytically established considering different type of irregularities, namely, rectangular and parabolic for both the cases of electrically open and short conditions.

Findings

The study reveals that the phase velocity of Love-type wave is prominently influenced by wave number, size of irregularity, piezoelectric constant and dielectric constant of an irregular piezoelectric layer. Numerical simulation and graphical illustrations have been effectuated to depict the pronounced impact of aforementioned affecting parameters on the phase velocity of Love-type wave. The major highlight of the paper is the comparative study carried out for rectangular irregularity and parabolic irregularity in both electrically open and short conditions. Classical Love wave equation has been recovered for both the electrical conditions as the limiting case when both media are elastic and interface between them is regular.

Practical implications

The consequences of the study can be utilized in the design of surface acoustic wave devices to enhance their efficiency, as the material properties and the type of irregularities present in the piezoelectric layer enable Love-type wave to propagate along the surface of the layer promoting the confinement of wave for a longer duration.

Originality/value

Up to now, none of the authors have yet studied the propagation of Love waves in a piezoelectric layer overlying an isotropic substrate involving both parabolic and rectangular irregularities. Further, the comparative study of rectangular irregularity and parabolic irregularity for both the cases of electrically open and short conditions elucidating the latent characteristics is among the major highlights and reflects the novelty of the present study.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 June 2020

Manisha Maity, Santimoy Kundu, Raju Kumhar and Shishir Gupta

This mathematical analysis has been accomplished for the purpose of understanding the propagation behaviour like phase velocity and attenuation of Love-type waves through…

Abstract

Purpose

This mathematical analysis has been accomplished for the purpose of understanding the propagation behaviour like phase velocity and attenuation of Love-type waves through visco-micropolar composite Earth’s structure.

Design/methodology/approach

The considered geometry of this problem involves a micropolar Voigt-type viscoelastic stratum imperfectly bonded to a heterogeneous Voigt-type viscoelastic substratum. With the aid of governing equations of motion of each individual medium and method of separation of variable, the components of micro-rotation and displacement have been obtained.

Findings

The boundary conditions of the presumed geometry at the free surface and at the interface, together with the obtained components of micro-rotation, displacement and mechanical stresses give rise to the determinant form of the dispersion relation. Moreover, some noteworthy cases have also been extrapolated in detail. Graphical interpretation irradiating the impact of viscoelasticity, micropolarity, heterogeneity and imperfectness on the phase velocity and attenuation of Love-type waves is the principal highlight of the present study.

Practical implications

In this study, the influence of the considered parameters such as micropolarity, viscoelasticity, heterogeneity, and imperfectness has been elucidated graphically on the phase velocity and attenuation of Love-type waves. It has been noticed from the graphs that with the rising magnitude of micropolarity and heterogeneity, the attenuation curves shift upwards, that is the loss of energy of these waves takes place in a rapid way. Hence, from the outcomes of the present analysis, it can be concluded that heterogeneous micropolar stratified media can serve as a helpful tool in increasing the attenuation or in other words, loss of energy of Love-type waves, thus reducing the devastating behaviour of these waves.

Originality/value

Till date, the mathematical modelling as well as vibrational analysis of Love-type waves in a viscoelastic substrate overloaded by visco-micropolar composite Earth’s structure with mechanical interfacial imperfection remain unattempted by researchers round the globe. The current analysis is an approach for studying the traversal traits of surface waves (here, Love-type waves) in a realistic stratified model of the Earth’s crust and may thus, serves as a dynamic paraphernalia in various domains like earthquake and geotechnical engineering; exploration geology and soil mechanics and many more, both in a conceptual as well as pragmatic manner.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 December 2019

Raju Kumhar, Santimoy Kundu, Manisha Maity and Shishir Gupta

The purpose of this paper is to examine the dependency of dispersion and damping behavior of Love-type waves on wave number in a heterogeneous dry sandy double layer of finite…

Abstract

Purpose

The purpose of this paper is to examine the dependency of dispersion and damping behavior of Love-type waves on wave number in a heterogeneous dry sandy double layer of finite thickness superimposed on heterogeneous viscoelastic substrate under the influence of hydrostatic initial stress.

Design/methodology/approach

The mechanical properties of the material of both the dry sandy layers vary with respect to a certain depth as quadratic and hyperbolic function, while it varies as an exponential function for the viscoelastic semi-infinite medium. The method of the separation of variables is employed to obtain the complex frequency equation.

Findings

The complex frequency equation is separated into real and imaginary components corresponding to dispersion and damping equation. After that, the obtained result coincides with the pre-established classical equation of Love wave, as shown in Section 5. The response of all mechanical parameters such as heterogeneities, sandiness, hydrostatic stress, thickness ratio, attenuation and viscoelasticity on both the phase and damped velocity against real wave number has been discussed with the help of numerical example and graphical demonstrations.

Originality/value

In this work, a comparative study clarifies that the Love wave propagates with higher speed in an isotropic elastic structure as compared to the proposed model. This study may find its applications in the investigation of mechanical behavior and deformation of the sedimentary rock.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 June 2022

Bhanu Pratap Rajak, Santimoy Kundu, Raju Kumhar and Shishir Gupta

The purpose of this study is stated regarding the impact of the horizontally polarized shear wave vibration on a composite medium in the terms of phase and damped velocity.

Abstract

Purpose

The purpose of this study is stated regarding the impact of the horizontally polarized shear wave vibration on a composite medium in the terms of phase and damped velocity.

Design/methodology/approach

The assumed composite is composed of magneto-elastic fiber-reinforced (MEFR) layer constrained between heterogeneous viscoelastic layer and heterogeneous elastic half-space. The considered heterogeneity is associated with the directional rigidity and mass density in the uppermost layer and half-space of quadratic and trigonometric types, respectively. The coupled field equations related to the respective medium are solved analytically by employing the method of separation of variables.

Findings

The dispersion relation of the stated problem is secured by using the continuity assumptions, imposed at the stress-free surface and the interfaces of the expressed medium. The adopted numerical examples are used to compute the dispersion relation and plot the graphs between phase/damped velocity and wave number. Parametric studies on the phase and damped velocity yield five main conclusions: (1) Phase velocity decreases with increasing value of wave number and damped velocity increases up to a certain number and then starts falling simultaneously with increasing magnitude of wave number while keeping the rest parametric values fixed. (2) The presence of heterogeneity in the upper layer enhances the phase velocity and diminishes the damped velocity, but the presence of heterogeneity in the half-space enhances both the phase and damped velocity. (3) The appearance of reinforced parameters enhances the phase velocity for the considered crystalline graphite material and diminishes the phase velocity for the rest materials (carbon fiber-epoxy resin and steel) of the MEFR layer. Similarly, damped velocity decreases for the assumed crystalline graphite material of the MEFR layer and increases for the rest materials of the MEFR layer. (4) The induced dissipation factor due to viscoelastic property shows reversal decreasing and increasing effect on phase and damped velocity of SH-wave. (5) Ascending values of the angle at which the wave crosses the magnetic field increase the phase velocity and decrease the damped velocity for all the considered MEFR examples.

Originality/value

Till date, the mathematical modeling as well as vibrational analysis of wave propagation through the composite structure consisting of MEFR layer constrained between viscoelastic media and elastic half-space under the effect of different varying properties with depth remains a new challenging issue for the researchers around the globe. The current analysis is an approach to move ahead in the era of wave propagation in different realistic models based on their parametric studies. Also, these studies are very helpful to find their applications in the field of mechanical, construction, aerospace, automobile, biomedical, marine, manufacturing industries and many branches of science and technology where magnetic fields induced in elastic deformation occur.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 February 2021

Parvez Alam, Suprava Jena, Irfan Anjum Badruddin, Tatagar Mohammad Yunus Khan and Sarfaraz Kamangar

This paper aims to study the attenuation and dispersion phenomena of shear waves in anelastic and elastic porous strips. Numerical investigations are performed for the phase and…

Abstract

Purpose

This paper aims to study the attenuation and dispersion phenomena of shear waves in anelastic and elastic porous strips. Numerical investigations are performed for the phase and damped velocity profiles of the wave. For numerical computation purposes, water-saturated limestone and kerosene oil saturated sandstone for the first and second porous strips, respectively. Some other peculiarities have been observed and discussed.

Design/methodology/approach

Dispersion and attenuation characteristic of the shear wave propagations have been studied in an inhomogeneous poro-anelastic strip of finite thickness, which is clamped between an inhomogeneous poroelastic strip of finite thickness and an elastic half-space. Both the strips are initially stressed and the half-space is self-weighted. Analytical methods are used to calculate the interior deformations of the model with the involvement of special functions. The determination of the frequency equation, which includes the Bessel’s and Whittaker functions, has been obtained using the prescribed boundary conditions.

Findings

Impacts of attenuation coefficient, dissipation factor, inhomogeneities, initial stresses, Biot’s gravity, porosity and thickness ratio parameters on the velocity profile of the wave have been demonstrated through the graphical visuals. These parameters are playing an important role and working as a catalyst in affecting the propagation behaviour of the wave.

Originality/value

Inclusion of the concept of doubly layered initially stressed inhomogeneous porous structure of elastic and anelastic medium bedded over a self-weighted half-space medium brings a novelty to the existing literature related to the study of shear wave. It may be helpful to geologists, seismologists and structural engineers in the development of theoretical and practical studies.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 March 2023

Manjeet Kumar, Pradeep Kaswan, Nantu Sarkar, Xu Liu and Manjeet Kumari

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal…

Abstract

Purpose

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal generalized thermoelastic media.

Design/methodology/approach

The bulk waves are represented with Helmholtz potentials. The stress-free insulated and isothermal plane surfaces are taken into account. Rayleigh wave dispersion relation has been established and is found to be complex. Due to the presence of radicals, the dispersion equation is continuously computed as a complicated irrational expression. The dispersion equation is then converted into a polynomial equation that can be solved numerically for precise complex roots. The extra zeros in this polynomial equation are eliminated to yield the dispersion equation’s roots. These routes are then filtered for inhomogeneous wave propagation that decays with depth. To perform numerical computations, MATLAB software is used.

Findings

In this medium, only one mode of Rayleigh wave exists at both isothermal and insulated boundaries. The thermal factors of nonlocal generalized thermoelastic materials significantly influence the particle motion, attenuation and phase velocity of the Rayleigh wave.

Originality/value

Numerical examples are taken to examine how the thermal characteristics of materials affect the existing Rayleigh wave’s propagation characteristics. Graphical analysis is used to evaluate the behavior of particle motion (such as elliptical) both inside and at the isothermal (or insulated) flat surface of the medium under consideration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 September 2014

Seyed Mahmoud Hosseini

The purpose of this paper is to propose a hybrid mesh-free method based on generalized finite difference (GFD) and Newmark finite difference methods to study the elastic wave

108

Abstract

Purpose

The purpose of this paper is to propose a hybrid mesh-free method based on generalized finite difference (GFD) and Newmark finite difference methods to study the elastic wave propagation in functionally graded nanocomposite reinforced by carbon nanotubes (FGNRCN). The presented hybrid mesh-free method is applied for a thick hollow cylinder, which is made of FGNRCN and excited by various mechanical shock loadings.

Design/methodology/approach

The FG nanocomposite cylinder is assumed to be under shock loading. The elastic wave propagation is obtained and studied for various nonlinear grading patterns and distributions of the aligned carbon nanotubes. The distribution of carbon naotubes in FG nanocomposite are considered to vary as nonlinear function of radius, which varies with various nonlinear grading patterns continuously through radial direction. The effective material properties of functionally graded carbon nanotube are estimated using a micro-mechanical model.

Findings

The mechanical shock analysis of FGNRCN thick hollow cylinder is carried out and the dynamic behavior of displacement field and the time history of radial displacement are obtained for various grading patterns. An effective hybrid mesh-free method based on GFD and Newmark finite difference methods is presented to calculate the average velocity of elastic wave propagation in FGNRCN. The average velocity of elastic wave propagation is obtained for various grading patterns and various kinds of volume fraction. The effects of some parameters on average velocity of elastic wave propagation are obtained and studied in detail.

Originality/value

The calculation of elastic radial wave propagation in a FGNRCN thick hollow cylinder is presented using a hybrid mesh-free method. The effects of some parameters on wave propagation such as various grading patterns of distribution of carbon nanotubes are studied in details.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1996

Gary Gibson

Investigates the effects of earthquakes in the Victoria region of Australia. Looks at how they can be predicted by the use of seismology, and how this information can be used to…

459

Abstract

Investigates the effects of earthquakes in the Victoria region of Australia. Looks at how they can be predicted by the use of seismology, and how this information can be used to protect buildings from major damage. Examines a system developed by the Seismology Research Centre, Bundoora, Australia, to provide alarm, damage scenario and response information after moderate or large earthquakes.

Details

Information Management & Computer Security, vol. 4 no. 3
Type: Research Article
ISSN: 0968-5227

Keywords

Article
Publication date: 1 March 2002

JOSE S. PENALVA ZUASTI

This article examines the economic impact of a major California earthquake, by focusing on the catastrophic damage to residential real estate. It asserts that the damage, although…

Abstract

This article examines the economic impact of a major California earthquake, by focusing on the catastrophic damage to residential real estate. It asserts that the damage, although substantial, would be small relative to the U.S. GNP. The author also asserts that the risk can be optimally allocated through reasonably priced insurance contracts and well‐functioning insurance derivative markets.

Details

The Journal of Risk Finance, vol. 3 no. 4
Type: Research Article
ISSN: 1526-5943

1 – 10 of over 5000