Search results

1 – 1 of 1
To view the access options for this content please click here
Article

Lounis Chermak, Nabil Aouf and Mark Richardson

In visual-based applications, lighting conditions have a considerable impact on quality of the acquired images. Extremely low or high illuminated environments are a real…

Abstract

Purpose

In visual-based applications, lighting conditions have a considerable impact on quality of the acquired images. Extremely low or high illuminated environments are a real issue for a majority of cameras due to limitations in their dynamic range. Indeed, over or under exposure might result in loss of essential information because of pixel saturation or noise. This can be critical in computer vision applications. High dynamic range (HDR) imaging technology is known to improve image rendering in such conditions. The purpose of this paper is to investigate the level of performance that can be achieved for feature detection and tracking operations in images acquired with a HDR image sensor.

Design/methodology/approach

In this study, four different feature detection techniques are selected and tracking algorithm is based on the pyramidal implementation of Kanade-Lucas-Tomasi (KLT) feature tracker. Tracking algorithm is run over image sequences acquired with a HDR image sensor and with a high resolution 5 Megapixel image sensor to comparatively assess them.

Findings

The authors demonstrate that tracking performance is greatly improved on image sequences acquired with HDR sensor. Number and percentage of finally tracked features are several times higher than what can be achieved with a 5 Megapixel image sensor.

Originality/value

The specific interest of this work focuses on the evaluation of tracking persistence of a set of initial detected features over image sequences taken in different scenes. This includes extreme illumination indoor and outdoor environments subject to direct sunlight exposure, backlighting, as well as dim light and dark scenarios.

Details

Kybernetes, vol. 43 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 1 of 1