Search results

1 – 10 of 287
Article
Publication date: 12 February 2024

Ivo Hristov, Matteo Cristofaro, Riccardo Camilli and Luna Leoni

This paper aims to (1) identify the different performance drivers (lead indicators) and outcome measures (lag indicators) investigated in the literature concerning the four…

Abstract

Purpose

This paper aims to (1) identify the different performance drivers (lead indicators) and outcome measures (lag indicators) investigated in the literature concerning the four balanced scorecard (BSC) perspectives in operations management (OM) contexts and (2) understand how performance drivers and outcome measures (and substantiated perspectives) are related.

Design/methodology/approach

We undertake a systematic literature review of the BSC literature in OM journals. From the final sample of 40 articles, performance drivers and outcome measures have been identified, and the relationships amongst them have been synthesised according to the system dynamics approach.

Findings

Findings show (1) the most relevant performance drivers and outcome measures within each BSC perspective, (2) their relationships, (3) how the perspectives are linked through the performance drivers and outcome measures and (4) how the different measures relate systemically. Accordingly, four causal loops amongst identified measures have been built, which – jointly considered – allowed for the creation of a dynamic strategy map for OM.

Originality/value

This study is the first one that provides a comprehensive and holistic view of how the different performance drivers and outcome measures within and between the four BSC perspectives in OM relate systemically, increasing the knowledge and understanding of scholars and practitioners.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 23 April 2024

Jiwon Chung, Hyunbin Won, Hannah Lee, Soah Park, Hyewon Ahn, Suhyun Pyeon, Jeong Eun Yoon and Sumin Koo

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user…

Abstract

Purpose

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user satisfaction.

Design/methodology/approach

This study selected fabrics and materials for the suit platform through material performance tests. Two anchoring structure designs, 11-type and X-type are compared with regular clothing under control conditions. To evaluate the comfort level of the wearable suit platform, a satisfaction survey and electroencephalogram (EEG) measurements are conducted to triangulate the findings.

Findings

The 11-type exhibited higher values in comfort indicators such as α, θ, α/High-β and lower values in concentration or stress indicators such as β, ϒ, sensorimotor rhythm (SMR)+Mid-β/θ, and a spectral edge frequency of 95% compared to the X-type while walking. The 11-type offers greater comfort and satisfaction compared to the X-type when lifting based on the EEG measurements and the participants survey.

Originality/value

It is recommended to implement the 11-type when designing wearable suit platforms. These findings offer essential data on wearability, which can guide the development of soft wearable robots.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2024

Rıza Atav and Özge Çolakoğlu

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate…

Abstract

Purpose

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate colors directly over the photos of fabric samples instead of color measuring with spectrophotometer which is thought to be useful in terms of online digital color assessment.

Design/methodology/approach

In this study, 100% polyester (150 denier) single jersey knitted fabrics (weight: 145 g/m2, course density: 15 loops/cm, wale density: 24 loops/cm) were used in the trials. The effect of laser treatments before and after dyeing on color was investigated. Laser treatments were applied to fabrics at different resolutions (20, 25 and 30 dpi) and pixel times (60, 80 and 100 µs) before dyeing. The power of the laser beam was 210 W and the wavelength was 10.6 µm. In order to determine the effect of laser treatment on polyester; FTIR analysis, SEM-EDX analysis and bursting strength tests were applied to untreated and treated fabric samples.

Findings

It was found that treatments with laser have a significant effect on disperse dye-uptake of polyester fibers, and for this reason laser-treated fabrics were dyed in darker shade. Furthermore, it was determined that the samples treated at 30 dpi started to melt and the fabric was damaged considerably, but the fabrics treated at 20 and 25 dpi were not affected at all. Another result obtained regarding the use of laser technology in polyester fabrics is that if some areas of fabrics are not treated with laser and some other areas are treated with laser at 20 dpi 60 µs and 25 dpi 60 µs, it will be possible to obtain patterns containing three different shades of the same color on the fabric.

Originality/value

When the literature is examined, it is seen that there are various studies on the dyeability and patterning of polyester fabrics with disperse dyes by laser technology. As it is known, today color measurement is done digitally using a spectrophotometer. However, when we look at a photograph on computer screens, the colors we see are defined by RGB (red-green-blue) values, while in the spectrophotometer they are defined by L*a*b* (L*: lightness-darkness, a*: redness-greenness, b*: yellowness-blueness) values. Especially when it is desired to produce various design products by creating patterns with laser technology, it would be more useful to show the color directly to the customer on the computer screen and to be able to speak over the same values on the color. For this reason, in this study, the color measurement of the fabric samples was not made with a spectrophotometer, instead, the RGB values obtained from the photographs of the samples were converted into L*a*b* values with MATLAB and interpreted, that is, a digital color evaluation was made on the photographs. Therefore, it is believed that this study will contribute to the literature.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 January 2024

Diane Rosen

This paper aims to offer a roadmap for a strengths-based approach to leadership.

Abstract

Purpose

This paper aims to offer a roadmap for a strengths-based approach to leadership.

Design/methodology/approach

A review and synthesis of various concepts relating to strengths in the workplace.

Findings

A strengths-based approach to leadership can lead to many positive outcomes, including increased employee engagement, productivity, satisfaction, performance and a more positive work environment.

Originality/value

This is a synthesis of a variety of ideas about how to lead with strengths and the positive implications of a strengths-oriented workplace culture.

Details

Strategic HR Review, vol. 23 no. 2
Type: Research Article
ISSN: 1475-4398

Keywords

Article
Publication date: 23 February 2024

Jing Jiang, Huijuan Dong, Yanan Dong, Huimin Gu and Yina Lv

This study aims to use event system theory and job demands–resources (JD-R) model to examine the double-edged sword effect of event strength of Beijing Winter Olympics (BWO) on…

Abstract

Purpose

This study aims to use event system theory and job demands–resources (JD-R) model to examine the double-edged sword effect of event strength of Beijing Winter Olympics (BWO) on volunteers’ in-role performance and proactive behavior as mediated by work overload and meaningfulness.

Design/methodology/approach

The sample included 193 volunteer–leader dyads working at one BWO venue. The authors conducted a multitime and multisource study using Mplus 8 to examine the hypotheses.

Findings

Volunteers’ perceived BWO event strength was positively related to work overload, which reduced in-role performance and proactive behavior. Volunteers’ perceived BWO event strength was also positively related to work meaningfulness, which promoted in-role performance and proactive behavior. Perceived organizational support served as a moderator by mitigating the positive relationship between perceived BWO event strength and work overload; however, it did not strengthen the positive relationship between perceived BWO event strength and work meaningfulness.

Originality/value

This study developed a comprehensive model of how BWO event strength affected volunteers’ performance from the perspective of event system theory and the JD-R model, which enriches theoretical application and research in the context of mega sport events.

研究目的

本研究运用事件系统理论和工作需求-资源(JD-R)模型, 探讨了2022年北京冬奥会(BWO)事件强度通过工作负荷和工作意义感知进而对志愿者角色内绩效和主动性行为的双刃剑效应。

研究设计

我们在冬奥会场所之一实施了多时点、多来源的收集数据的方式, 最终样本包括193份志愿者-领导配对数据, 并使用Mplus 8来检验我们的假设。

研究发现

志愿者感知的BWO事件强度与工作负荷呈正相关, 进而会降低他们的角色内绩效和主动性行为。志愿者感知的BWO事件强度与工作意义感也呈正相关, 进而会促进他们的角色内绩效和主动性行为。感知的组织支持通过弱化BWO事件强度与工作负荷之间的正相关关系, 进而调节了志愿者的角色内绩效和主动性行为; 然而, 感知的组织支持并没有强化BWO事件强度与工作意义感之间的正相关关系。

原创性

本研究结合事件系统理论和JD-R模型, 发展了一个BWO事件强度对志愿者绩效表现影响的综合模型, 丰富了有关大型体育赛事志愿者的理论应用和研究。

Objetivo

Este estudio utiliza la teoría del sistema de eventos y el modelo de demandas de trabajo-recursos (JD-R) para examinar el efecto de doble filo de la fuerza del evento de los Juegos Olímpicos de Invierno de Pekín (BWO) sobre el rendimiento en el rol y el comportamiento proactivo de los voluntarios, mediado por la sobrecarga laboral y la significatividad del trabajo.

Diseño/metodología/enfoque

Nuestra muestra incluyó 193 díadas de voluntarios-líderes que trabajaban en una sede de BWO. Realizamos un estudio multitemporal y multifuente utilizando Mplus 8 para examinar nuestras hipótesis.

Resultados

La intensidad percibida por los voluntarios en los eventos de BWO también se relacionó positivamente con la significación del trabajo, que promovió el rendimiento en el rol y el comportamiento proactivo. Además, el apoyo organizativo percibido sirvió como moderador al mitigar la relación positiva entre la intensidad percibida del evento BWO y la sobrecarga de trabajo; sin embargo, no reforzó la relación positiva entre la intensidad percibida del evento BWO y la significatividad del trabajo.

Originalidad/valor

Este estudio desarrolló un modelo integral de cómo la fuerza del evento BWO afectaba al rendimiento de los voluntarios desde la perspectiva de la teoría del sistema de eventos y el modelo JD-R, lo que enriquece la aplicación teórica y la investigación en el contexto de los megaeventos deportivos.

Article
Publication date: 14 November 2023

S. Raja Balasaraswathi and Jonalee D. Bajpai

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the…

Abstract

Purpose

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the apparel endues. The purpose of this study is to explore the application of ultrasonic welding in apparel by analyzing the impacts of different parameters.

Design/methodology/approach

This study analyzed the influence of ultrasonic welding parameters, including pressure, welding speed and ultrasonic power on the seam performances (seam strength, seam bursting strength, seam thickness and seam stiffness). The parameters are optimized using Box–Behnken experimental design to achieve better seam performances.

Findings

The properties of ultrasonic seams are influenced by welding and fabric properties. Ultrasonically welded seams showed better performances in the case of comfort properties of seams, whereas the functional properties are lesser compared to conventional seams.

Originality/value

The findings of the research clearly outline the level of influence of different parameters on the performance of the ultrasonically welded seams in knitted fabrics, which can greatly help in applying ultrasonic welding manufacturing methods in apparel manufacturing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 December 2023

Jingxiao Shu, Yao Lu and Yan Liang

To understand the seismic behavior of reinforced concrete (RC) beams confined by corroded stirrups, low-reversed cyclic loading tests were carried out on seven RC beam specimens…

Abstract

Purpose

To understand the seismic behavior of reinforced concrete (RC) beams confined by corroded stirrups, low-reversed cyclic loading tests were carried out on seven RC beam specimens with different stirrup corrosion levels and stirrup ratios to investigate their mechanical characteristics.

Design/methodology/approach

The failure mode, hysteresis behavior, skeleton curves, ductility, stiffness degradation and energy dissipation behavior of RC specimens are compared and discussed. The experimental results showed that the restraint of concrete provided by corroded stirrups is reduced, which leads to a decline in seismic performance.

Findings

For the specimens with the same ratios of stirrup, as the corrosion level increased, the load-carrying capacity, stiffness, plastic deformation capacity and energy-dissipation capacity dropped significantly. Compared with the uncorroded specimen, the failure modes of specimens with high corrosion level changed from ductile bending failure to brittle failure. For the specimens with the same levels of corrosion, the higher the stirrup ratio was, the stronger the restraint effect of the stirrups on the concrete, and the seismic behavior of the specimens was obviously improved.

Originality/value

In this paper, a total of seven full-size RC beam specimens at joints with different stirrup corrosion levels and stirrup ratios were designed and constructed to explore the influences of corrosion levels and stirrup ratios of stirrups on the seismic performances. The failure modes, strain of reinforcement, hysteretic curves, skeleton curves, stiffness degradation and ductility factor of RC specimens are compared and discussed.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 February 2024

Bushi Chen, Xunyu Zhong, Han Xie, Pengfei Peng, Huosheng Hu, Xungao Zhong and Qiang Liu

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system…

Abstract

Purpose

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system used by AMRs to overcome challenges in dynamic and changing environments.

Design/methodology/approach

This research introduces SLAM-RAMU, a lifelong SLAM system that addresses these challenges by providing precise and consistent relocalization and autonomous map updating (RAMU). During the mapping process, local odometry is obtained using iterative error state Kalman filtering, while back-end loop detection and global pose graph optimization are used for accurate trajectory correction. In addition, a fast point cloud segmentation module is incorporated to robustly distinguish between floor, walls and roof in the environment. The segmented point clouds are then used to generate a 2.5D grid map, with particular emphasis on floor detection to filter the prior map and eliminate dynamic artifacts. In the positioning process, an initial pose alignment method is designed, which combines 2D branch-and-bound search with 3D iterative closest point registration. This method ensures high accuracy even in scenes with similar characteristics. Subsequently, scan-to-map registration is performed using the segmented point cloud on the prior map. The system also includes a map updating module that takes into account historical point cloud segmentation results. It selectively incorporates or excludes new point cloud data to ensure consistent reflection of the real environment in the map.

Findings

The performance of the SLAM-RAMU system was evaluated in real-world environments and compared against state-of-the-art (SOTA) methods. The results demonstrate that SLAM-RAMU achieves higher mapping quality and relocalization accuracy and exhibits robustness against dynamic obstacles and environmental changes.

Originality/value

Compared to other SOTA methods in simulation and real environments, SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 287