Search results

11 – 20 of 225
Article
Publication date: 27 February 2018

Partha Pratim Ray

Continuous glucose monitoring (CGM) is a notable invention introduced in the biomedical industry. It provides valuable information about intermittent capillary blood glucose that…

Abstract

Purpose

Continuous glucose monitoring (CGM) is a notable invention introduced in the biomedical industry. It provides valuable information about intermittent capillary blood glucose that is normally unattainable by regular clinical blood sample tests. CGM includes several progressive facilities such as instantaneous and real-time display of blood glucose level, “24/7” coverage, continuous motion of alerts for actual or impending hypo- and hyperglycemia and the ability to characterize glycemic variability. CGM allows users and physicians to visualize and diagnose more accurate and precise rate of change of glucose by capacitating small, comfortable, user-friendly sensor devices. Sometimes, this vital information is shared to the personal message box over Internet. In short, CGM is capable to inform, educate, motivate and alert (IEMA) people with diabetes. Despite the huge expectation with CGM, the available solutions have not attracted much attention among people. The huge potential of CGM in future diabetic study relies on the successful implication of the CGM. This paper aims at disseminating of state-of-the-art knowledge about existing work around the CGM.

Design/methodology/approach

This paper presents a comprehensive systematic review on the recent developments in CGM development techniques that have been reported in credible sources, namely PubMed, IEEE Xplore, Science Direct, Springer Link, Scopus and Google Scholar. Detailed analysis and systematic comparison are provided to highlight the achievement and future direction of CGM deployment.

Findings

Several key challenges are also portrayed for suitable opportunistic orientation. CGM solutions from four leading manufacturers such as Tandem, Dexcom, Abbott and Medtronic are compared based on the following factors including accuracy (% MARD); sensor lifetime, calibration requirement, smart device, compatibility and remote monitoring. Qualitative and quantitative analyses are performed.

Originality/value

This work can be a valuable source of reference and guidance for future research in this field.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 May 2020

Arka Ghosh, David John Edwards, M. Reza Hosseini, Riyadh Al-Ameri, Jemal Abawajy and Wellington Didibhuku Thwala

This research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective…

Abstract

Purpose

This research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective non-destructive technologies. In so doing, the work illustrates how a coalescence of low-cost digital technologies can seamlessly integrate to solve practical construction problems.

Design/methodology/approach

A mixed philosophies epistemological design is adopted to implement the empirical quantitative analysis of “real-time” data collected via sensor-based technologies streamed through a Raspberry Pi and uploaded onto a cloud-based system. Data was analysed using a hybrid approach that combined both vibration-characteristic-based method and linear variable differential transducers (LVDT).

Findings

The research utilises a novel digital research approach for accurately detecting and recording the localisation of structural cracks in concrete beams. This non-destructive low-cost approach was shown to perform with a high degree of accuracy and precision, as verified by the LVDT measurements. This research is testament to the fact that as technological advancements progress at an exponential rate, the cost of implementation continues to reduce to produce higher-accuracy “mass-market” solutions for industry practitioners.

Originality/value

Accurate structural health monitoring of concrete structures necessitates expensive equipment, complex signal processing and skilled operator. The concrete industry is in dire need of a simple but reliable technique that can reduce the testing time, cost and complexity of maintenance of structures. This was the first experiment of its kind that seeks to develop an unconventional approach to solve the maintenance problem associated with concrete structures. This study merges industry 4.0 digital technologies with a novel low-cost and automated hybrid analysis for real-time structural health monitoring of concrete beams by fusing several multidisciplinary approaches into one integral technological configuration.

Details

International Journal of Building Pathology and Adaptation, vol. 39 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 13 September 2011

Stephen J. Mihailov, Dan Grobnic, Christopher W. Smelser, Robert B. Walker, Ping Lu and Huimin Ding

The purpose of this paper is to present a review of research performed at the Communications Research Centre Canada on sensing applications of femtosecond infrared laser‐inscribed…

Abstract

Purpose

The purpose of this paper is to present a review of research performed at the Communications Research Centre Canada on sensing applications of femtosecond infrared laser‐inscribed Bragg gratings.

Design/methodology/approach

By using fibre Bragg gratings induced with ultrafast infrared radiation, inscription of high temperature stable sensors in standard and exotic optical waveguides is investigated for a variety of novel applications.

Findings

Generally, femtosecond laser‐induced gratings are effective sensors that can be applied in situations and environments where most fibre optic sensors are not effective.

Originality/value

The paper is a review of existing work already published in the literature and provides an overview of this technology to the reader.

Article
Publication date: 1 June 2005

Robert Bogue

This paper describes a recent collaborative project involving the development of a multiplexed fibre Bragg grating (FBG) sensor system for structural integrity monitoring.

Abstract

Purpose

This paper describes a recent collaborative project involving the development of a multiplexed fibre Bragg grating (FBG) sensor system for structural integrity monitoring.

Design/methodology/approach

The system is described and field trials on both conventional and novel composite bridges are discussed. A FBG sensor‐based structural monitoring system was developed, based on a fluorescent fibre as the optical source. It used a tuneable, fibre‐coupled, Fabry‐Perot filter, actuated by piezoelectric transducers and operated over the bandwidth of the source at up to 250 scans/second. Light from the source was filtered and reflected back from the Bragg gratings, through optical couplers, to eight photodiode detectors. These detected the resulting time‐domain spectra of the sensors in each of the serially connected sensor arrays. The system was tested at City University and then subjected to trials on the Mjosund road bridge in Norway and on West Mill bridge in Oxfordshire, UK, which is the first bridge to be fabricated from a new type of composite material.

Findings

During the Norwegian trials the system was arranged with four or five FBG sensors per channel giving a total of 32 measurement points with eight parallel channels. Twelve conventional foil strain gauges and a number of thermocouples were also installed. Different static and dynamic loads were applied over a period of 18 months and the results showed that the thermally compensated strain data obtained optically matched those from the resistive gauges to within <5 με. During the construction stage of the Oxfordshire bridge, sections of the decking and longitudinal composite support beams were instrumented with 40 FBG sensors with temperature compensation, placed at pre‐selected sites of maximum strain. These exhibited a resolution of ±5 με and an operating range of over ±2,000 με.

Originality/value

This research has shown that multiplexed, multi‐point FBG sensor systems can accurately and reliably monitor both static and dynamic strains in large structures over a range of temperatures and for extended periods of time.

Details

Sensor Review, vol. 25 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 November 2021

Zhongchao Qiu, Ruwang Mu, Yuzi Zhang, Yanan Li, Yuntian Teng and Li Hong

This study aims to solve the problem of temperature cross sensitivity of fiber Bragg grating in structural health monitoring, proposing a novel acceleration sensor based on strain…

Abstract

Purpose

This study aims to solve the problem of temperature cross sensitivity of fiber Bragg grating in structural health monitoring, proposing a novel acceleration sensor based on strain chirp effect which is insensitive to temperature.

Design/methodology/approach

A kind of M-shaped double cantilever beam structure is developed. The fiber grating is pasted in the gradient strain region of the beam, and the chirp effect is produced under the action of non-uniform stress, and then the change of acceleration is converted into the change of reflection bandwidth to demodulate and eliminate the temperature interference. Through theoretical analysis, simulation and experimental verification with rectangular beam sensor.

Findings

The results show that the sinusoidal curvature beam sensor is insensitive to the change of temperature and is more likely to produce chirp effect. The sensitivity is about 317 pm/g, and the natural frequency is 56 Hz.

Originality/value

This paper fulfils an insensitive to temperature changes sensor which has effectively solved the temperature cross-sensitivity problem in building structure health monitoring.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 August 2021

Xiao Fang, Yajie Zeng, Feng Xiong, Jiang Chen and Fei Cheng

Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed…

Abstract

Purpose

Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed optical fiber sensing technology based on the temperature tracing method has been paid more attention due to its unique advantages of high sensitivity, good stability and high resolution. The purpose of this paper is to make a review of the existing related research, so as to facilitate the later scholars to understand and further study more systematically.

Design/methodology/approach

In this paper, three kinds of commonly used distributed fiber temperature measurement technologies are introduced. Based on the working principle, monitoring system, theoretical analysis, experimental research and engineering application of the fiber seepage monitoring technology, the present situation of dam seepage monitoring based on distributed fiber is reviewed in detail and their advantages and disadvantages are compared.

Findings

The thermal monitoring technology of seepage measurement depends on the accuracy of optical fiber temperature measurement (including the accuracy of the system and the rationality of the discrimination method), the correct installation of optical fiber and the quantitative analysis of temperature data. The accuracy of the current monitoring system can basically meet the existing measurement requirements, but the correct installation of optical fiber and the calibration of temperature data need to be further studied for different discrimination methods, and this field has great research value.

Originality/value

At present, there are many applications and research studies of optical fiber sensing in the field of structural health monitoring, and there are also reviews of related aspects. However, there is little or no review only in the field of seepage monitoring. This paper summarizes the research and application of optical fiber sensing in the field of seepage monitoring. The possibility of the gradient method to find its new prospect with the development of monitoring systems and the improvement of temperature resolution is discussed. The idea of extending the seepage monitoring method based on distributed optical fiber thermal monitoring technology to other monitoring fields is also given in the paper.

Article
Publication date: 25 October 2020

Meng Zhang, Weifang Zhang, Xiaobei Liang, Yan Zhao and Wei Dai

Crack damage detection for aluminum alloy materials using fiber Bragg Grating (FBG) sensor is a kind of structure health monitoring. In this paper, the damage index of full width…

Abstract

Purpose

Crack damage detection for aluminum alloy materials using fiber Bragg Grating (FBG) sensor is a kind of structure health monitoring. In this paper, the damage index of full width at half maximum (FWHM) was extracted from the distorted reflection spectra caused by the crack-tip inhomogeneous strain field, so as to explain the crack propagation behaviors.

Design/methodology/approach

The FWHM variations were also investigated through combining the theoretical calculations with simulation and experimental analyses. The transfer matrix algorithm was developed to explore the mechanism by which FWHM changed with the linear and quadratic strain. Moreover, the crack-tip inhomogeneous strain field on the specimen surface was computed according to the digital image correlation measurement during the experiments.

Findings

The experimental results demonstrated that the saltation points in FWHM curve accorded with the moments of crack propagation to FBG sensors.

Originality/value

The interpretation of reflected spectrum deformation mechanism with crack propagation was analyzed based on both simulations and experiments, and then the performance of potential damage features – FWHM were proposed and evaluated. According to the correlation between the damage characteristic and the crack-tip location, the crack-tip of the specimen could be measured rapidly and accurately with this technique.

Article
Publication date: 1 June 2000

L. Everall, A. Gallon and D. Roberts

This paper describes state‐of‐the‐art optical technology, employing Bragg gratings, which has been used to develop an Optical Fibre Strain Sensing System. This system is capable…

Abstract

This paper describes state‐of‐the‐art optical technology, employing Bragg gratings, which has been used to develop an Optical Fibre Strain Sensing System. This system is capable of providing actual strain and temperature information for new and existing structures. The sensors, written into the core of standard single mode optical fibre, are embedded into the composite material, or surface bonded on to the structure for load monitoring. The system can be used as a design tool for engineers, for composite cure‐monitoring, setting up of rigs etc., or can be used as a health monitoring tool to periodically monitor loading of bridges, buildings and pipelines.

Details

Sensor Review, vol. 20 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1247

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1096

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

11 – 20 of 225