Search results

1 – 10 of 216
Article
Publication date: 22 March 2021

Mahmoud M.A. Eid and Ahmed Nabih Zaki Rashed

The purpose of this study aims to simulate the long-period fiber grating sensor pulse peak position against the transmission range. The long-period fiber grating sensor pulse peak…

Abstract

Purpose

The purpose of this study aims to simulate the long-period fiber grating sensor pulse peak position against the transmission range. The long-period fiber grating sensor pulse peak position against the transmission range is simulated clearly where the pulse peak value at zero position is 0.972655 with the ripple factor of unity. It is demonstrated that the long-period fiber grating sensor bandwidth can be estimated to be 50 µm. Wavelength shift of the long-period grating sensor (LPGS) is reported against grating wavelength, applied temperatures and applied micro strain.

Design/methodology/approach

This work has reported the numerical simulation of LPGS transmission spectrum behavior characteristics under the strain and temperature effects by using OptiGrating simulation software. The sensor fabrication material is silica-doped germanium. The transmittivity/reflectivity and input spectrum pulse intensity of long-period Bragg sensor variations are simulated against the grating wavelength variations. Input/output pulse intensity of LPGS variations is simulated against the timespan variations with the Gaussian input pulse from 100 to 500 km link length.

Findings

Temperature variation and strain variation of the LPGS are outlined against both applied temperatures and micro-strain variations at the central grating wavelength of 1,550 nm.

Originality/value

It is demonstrated that the long period fiber grating sensor bandwidth can be estimated to be 50 µm. Wavelength shift of the long period grating sensor is reported against both grating wavelength, applied temperatures and applied micro strain. Temperature variation and strain variation of the long period grating sensor are outlined against both applied temperatures and micro strain variations at the central grating wavelength of 1550 nm.

Details

Sensor Review, vol. 41 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 June 2013

Yage Zhan, Kan Gu, Hua Wu and Jun Luo

The on‐line concentration and temperature measurement of solutions is of great interest as a means of quality production control in many industrial processes, such as in food…

Abstract

Purpose

The on‐line concentration and temperature measurement of solutions is of great interest as a means of quality production control in many industrial processes, such as in food service industry, pharmaceuticals industry, chemical industry and environmental engineering, especially for harmful solutions or solutions that cannot be reached by the operator. This paper seeks to address these issues.

Design/methodology/approach

A high resolution all‐fiber multi‐parameter sensor system has been studied theoretically and experimentally. The sensor system can be used for on‐line monitoring of concentration and temperature simultaneously and dynamically. A combined long period fiber grating (CLPG) is used as the sensor head based on its resonance wavelength shifts being almost linearly with concentration and temperature, and also based on that the two applied resonance peaks have different concentration‐wavelength coefficients and different temperature‐wavelength coefficients. Two wavelength‐matched fiber Bragg gratings (FBGs) are used to convert resonance peak wavelengths of the CLPG into corresponding intensities for interrogation.

Findings

When the concentration and the temperature all fluctuate dynamically during experiments, a concentration resolution of 0.03 g/L has been achieved in the range of 0∼200 g/L, and a temperature resolution of 0.02C has been realized in the range of −20∼60C.

Originality/value

On‐line monitoring of concentration and temperature for solutions is a means of quality production control in biological, chemical and other many industrial processes, such as in food service industry, pharmaceuticals industry, chemical industry, and also in environmental engineering, especially for harmful solutions or solutions that cannot be reached by the operator. Optical fiber sensors have numerous advantages over traditional sensors, such as immunity to electromagnetic interference, higher stability and sensitivity, more easiness of multiplex, being competent for application in harsh environments, “smart structures” and on‐site measurements. Long period optical fiber grating sensor is the most appropriate sensor for multi‐parameter monitoring in the fields mentioned above, which has all the advantages of optical fiber sensor. Besides, optical fiber grating sensors can be used for monitoring more accurately because its signal is coded by wavelength. The all‐fiber sensor system is suitable for remote monitoring of many solutions, such as the solutions of NaCl, glucose, alcohol, and hydrocarbon.

Details

Sensor Review, vol. 33 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 December 2017

Meng Jiang, Ze-Ming Wang, Zhong-Ze Zhao, Kun Li and Fu Yang

The purpose of this paper is to demonstrate a simple fiber sensor for simultaneous measurement of liquid refractive-index (RI) and temperature.

Abstract

Purpose

The purpose of this paper is to demonstrate a simple fiber sensor for simultaneous measurement of liquid refractive-index (RI) and temperature.

Design/methodology/approach

The sensor structure is formed by a long period fiber grating cascaded with a section of thin-core fiber. The long period fiber grating is fabricated on single mode fiber, followed by a section of 20-mm length thin-core fiber which is a modal interferometer.

Findings

Cladding mode interference between long period fiber grating and thin-core fiber modal interferometer is weak in the experimental investigation. Both of these two cladding mode type fiber devices are sensitive to surrounding RI and temperature. So the RI and temperature can be measured simultaneously by monitoring the spectral characteristics of the compound sensor. The sensitivity is calibrated and sensor matrix is provided in the experiment.

Originality/value

This proposed fiber sensor is simple, tough, cost-effective and suitable for discriminate the liquid RI and temperature with high sensitivity.

Details

Sensor Review, vol. 38 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1998

Vincent A. Handerek

Optical fibre multiplexed sensors are used to make measurements at multiple, discrete locations, usually by sending optical signals between each measurement location and a…

668

Abstract

Optical fibre multiplexed sensors are used to make measurements at multiple, discrete locations, usually by sending optical signals between each measurement location and a conveniently positioned optical interrogation instrument. It is rapidly becoming practical to construct multiplexed optical fibre sensor arrays based on in‐fibre Bragg gratings. A Bragg grating can be produced in an optical fibre by writing a periodic variation in the refractive index of the fibre’s core along the axis, using ultra‐violet light. Multiplexing applications will appear ranging from the small scale, with only a few sensors, up to very large scales with hundreds of sensors.

Details

Sensor Review, vol. 18 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 April 2022

Peng Xue, Jie Zheng, Yue Xu, Haiyang Bao and Rui Zhang

This study aims to analyze the transmission characteristics of a long-period grating (LPG) fabricated on plastic optical fibers (POFs) and its refractive index (RI) sensing.

Abstract

Purpose

This study aims to analyze the transmission characteristics of a long-period grating (LPG) fabricated on plastic optical fibers (POFs) and its refractive index (RI) sensing.

Design/methodology/approach

The geometric optic method is used to analyze the factors affecting the transmission characteristics of an LPG on POFs. The RI sensing performances of unbent LPGs and U-bent LPGs fabricated on POFs with different diameters are evaluated experimentally.

Findings

This study shows that the transmission loss caused by LPG strongly depends on the structural parameters of LPG and the environmental RI. For the unbent LPG, the highest RI sensitivity of 1,015%/RI unit (RIU) was obtained in the RI range of 1.33–1.45. For the U-bent LPG without cladding, the highest RI sensitivities of 1,007 and 559%/RIU are obtained in the RI ranges of 1.33–1.40 and 1.40–1.45, respectively.

Originality/value

A geometric optic method is used to analyze the transmission characteristics for an LPG on POFs, and the RI sensing of the LPGs are studied experimentally. The results show the LPG has a good RI sensing performances and is with the features of low-cost, simple structure and easy fabrication.

Article
Publication date: 18 January 2013

Jiang Qi

The purpose of this paper is to compare the sensing characteristics of uniform fiber Bragg grating (FBG) and tilted fiber Bragg grating (TFBG) by presenting a detailed research…

Abstract

Purpose

The purpose of this paper is to compare the sensing characteristics of uniform fiber Bragg grating (FBG) and tilted fiber Bragg grating (TFBG) by presenting a detailed research review. Temperature, axial strain, bending, vibration and refractive index measurands of FBG and TFBG sensor are presented and some significant differences are found.

Design/methodology/approach

Theoretical analysis and practical application in engineering are investigated and compared from other authors' research papers and self analysis. Spectra behavior of both FBG and TFBG are discussed.

Findings

There are found to be significant differences in temperature, axial strain, bending, vibration and refractive index sensing characteristics of FBG and TFBG.

Originality/value

The paper's analysis is comprehensive and clear and provides readers with the sensing characteristics of FBG and TFBG in detail.

Article
Publication date: 27 June 2008

James Hunt

The purpose of this paper is to look at fibreoptic sensing techniques and applications.

Abstract

Purpose

The purpose of this paper is to look at fibreoptic sensing techniques and applications.

Design/methodology/approach

The paper provides information on fibreoptic sensing technologies, instrumentation, advantages and applications.

Findings

Fibreoptic sensing, especially fibreoptic Bragg gratings, provide a highly effective means of monitoring internal changes in structural and other components that were previously impossible or very difficult to detect. Such systems are now approaching full commercialisation.

Originality/value

The paper provides a useful overview of how fibreoptic sensors work, and the advantages they provide when used in instrumentation applications ranging from compact devices to large and complex structures, where they may be structurally integrated.

Details

Sensor Review, vol. 28 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 March 2008

S. O'Keeffe, C. Fitzpatrick, E. Lewis and A.I. Al‐Shamma'a

The purpose of this paper is to provide a detailed review of radiation dosimetry techniques based on optical fibre dosimeters. It presents a comprehensive bibliography of the…

2879

Abstract

Purpose

The purpose of this paper is to provide a detailed review of radiation dosimetry techniques based on optical fibre dosimeters. It presents a comprehensive bibliography of the current research activities in the area.

Design/methodology/approach

A range of published work on optical fibre radiation dosimeters are presented, with the merits and limitations discussed. Each radiation dosimetry technique is discussed in turn, providing examples of dosimeters using such techniques reviewed. The main focus is on gamma radiation although other radiation dosimeters are considered.

Findings

This paper provides information on the wide range of research activity into radiation dosimeters. The dose ranges of these dosimeters are presented, along with the advantages and disadvantages of different dosimetry techniques.

Originality/value

A comprehensive review of published research in the area of solid radiation dosimetry is presented in this paper. It provides an individual with a review of the various techniques used and most recent research in that field.

Details

Sensor Review, vol. 28 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 August 2014

Yongxing Guo, Dongsheng Zhang, Zude Zhou, Fangdong Zhu and Li Xiong

This paper aims to present an effective sensing detection system based on fiber Bragg grating (FBG) sensing technology for protective barriers that have been effectively applied…

Abstract

Purpose

This paper aims to present an effective sensing detection system based on fiber Bragg grating (FBG) sensing technology for protective barriers that have been effectively applied to intercept and stop rocks from falling onto railway tracks. . Determination of exact stress and deformation values during impact tests for key components of the protective barrier forms important criteria for quality control of these barriers. Monitoring changes in force along the protective barrier when deployed in field application allows for real-time disaster warning for collapse and falling rocks.

Design/methodology/approach

In this paper, we propose a monitoring strategy for key components of a protective barrier. During performance tests, dynamic force and strain were measured for the steel strands and supporting I-beam, respectively. Design of a special elastic structure for the force transducer based on finite element analysis and tensile tests has been discussed here. Two types of FBG force transducers were manufactured based on the elastic structure. Four FBG force transducers and four FBG strain sensors were used for impact verification testing of a new rigid protective barrier with a design protection level of 25 KJ.

Findings

Dynamic force and strain responses were obtained during an impact of free-falling block with a kinetic energy of 25 KJ.

Originality/value

The FBG monitoring scheme can be extremely valuable for optimized design of the barrier and can provide real-time disaster warning in regions of collapse and falling rocks.

Article
Publication date: 11 June 2019

Ning Jing

This paper aims to propose a liquid level sensor with a multi-S-bend plastic optical fiber.

Abstract

Purpose

This paper aims to propose a liquid level sensor with a multi-S-bend plastic optical fiber.

Design/methodology/approach

The principle of liquid sensing used is based on the leakage of higher modes out of the fiber and repeated regeneration in the following bend sections. Therefore, a propagation loss was introduced in every bend section of the fiber with the loss depending on the refractive index of the environment.

Findings

Therefore, a continue shift in the liquid level can be detected by observing changes in the propagation loss of the fiber. The sensor features compactness and a flexible resolution.

Originality/value

Compared with the exited ones, the sensor has capability of continue liquid measurement and a greater measurement range.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 216