Search results

1 – 10 of over 4000
Article
Publication date: 7 December 2015

Naoya Tada and Manabu Nohara

Local wall thinning is one of serious problems in aged power generating plants. As the thinning grows inside the pipes, it is difficult to detect and evaluate it from the outer…

Abstract

Purpose

Local wall thinning is one of serious problems in aged power generating plants. As the thinning grows inside the pipes, it is difficult to detect and evaluate it from the outer surface of pipe. The purpose of this paper is to evaluate the method of semi-ellipsoidal wall thinning geometry on the back surface of flat plate by direct-current potential difference method (DC-PDM) was proposed as a preliminary research for the pipe wall thinning evaluation. The evaluation was performed for the potential difference numerically obtained by finite element method and the results were discussed.

Design/methodology/approach

A number of electric field analyses are necessary to evaluate the geometry of local wall thinning. In this study, defect-current modification method (DCMM), which is very fast analysis method based on the formulated solution for the similar thinning geometry, was used. The DCMM enabled the repeated electric field analyses necessary for the evaluation.

Findings

The potential difference on the front surface of plate was higher than the other part because of the electric current disturbance by a wall thinning on the back surface. In addition, the distribution depended on the geometry of the wall thinning. In this study, the shape of the thinning was assumed to be ellipsoid, and the width, depth, and length of the thinning were successfully evaluated based on the potential difference distribution on the front surface.

Originality/value

Evaluation of local wall thinning geometry was carried out by repeated analyses using DCMM, and the results were successful. This fact suggests that the evaluation of local wall thinning is possible by DC-PDM. The proposed method is going to be extended to the local wall thinning on the inner surface of pipe by geometrical conversion.

Details

International Journal of Structural Integrity, vol. 6 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 July 2021

Silambarasan R., Veerappan A.R. and Shanmugam S.

The purpose of this study is to investigate the effect of structural deformations and bend angle on plastic collapse load of pipe bends under an in-plane closing bending moment…

Abstract

Purpose

The purpose of this study is to investigate the effect of structural deformations and bend angle on plastic collapse load of pipe bends under an in-plane closing bending moment (IPCM). A large strain formulation of three-dimensional non-linear finite element analysis was performed using an elastic perfectly plastic material. A unified mathematical solution was proposed to estimate the collapse load of pipe bends subjected to IPCM for the considered range of bend characteristics.

Design/methodology/approach

ABAQUS was used to create one half of the pipe bend model due to its symmetry on the longitudinal axis. Structural deformations, i.e. ovality (Co) and thinning (Ct) varied from 0% to 20% in 5% steps while the bend angle (ø) varied from 30° to 180° in steps of 30°.

Findings

The plastic collapse load decreases as the bend angle increase for all pipe bend models. A remarkable effect on the collapse load was observed for bend angles between 30° and 120° beyond which a decline was noticed. Ovality had a significant effect on the collapse load with this effect decreasing as the bend angle increased. The combined effect of thinning and bend angle was minimal for the considered models and the maximum per cent variation in collapse load was 5.76% for small bend angles and bend radius pipe bends and less than 2% for other cases.

Originality/value

The effect of structural deformations and bend angle on collapse load of pipe bends exposed to IPCM has been not studied in the existing literature.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 December 2023

Hamid Naseri, Tadeh Zirakian and Hossein Showkati

Vertical cylindrical welded steel tanks are typical thin-walled structures that are very susceptible to buckling under settlement. The major concern in the design of these thin

15

Abstract

Purpose

Vertical cylindrical welded steel tanks are typical thin-walled structures that are very susceptible to buckling under settlement. The major concern in the design of these thin-walled structures is buckling failure. On this basis and by considering the findings of the previously reported research works, the stability performance of open-top steel tanks with various industrial applications under local support edge settlement is further investigated in this paper. This study aims to contribute to the current state-of-the-art in the design and retrofit of such thin-walled structures.

Design/methodology/approach

The buckling behaviors of numerous cylindrical shell models with various height-to-radius, radius-to-thickness and settlement span ratios are investigated through linear and nonlinear buckling analyses. The effects of addition of a top stiffening ring on the buckling behavior of cylindrical steel tanks are studied as well.

Findings

This parametric study demonstrates that the choice of the height-to-radius, radius-to-thickness and settlement span ratios as well as addition of the top stiffening ring can be quite effective on the stiffness and strength performances, deformations and stress distribution as well as intensity of vertical cylindrical welded steel tanks subjected to local support edge settlement.

Originality/value

This research endeavor was formulated on the basis of a comprehensive literature survey and demonstrates the relationship between geometrical as well as stiffening features and buckling stability performance of open-top tanks subjected to local support edge settlement and also provides practical recommendations for design and retrofit purposes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 November 2021

Mohamed A. Khalifa, Mohamed A. Aziz, Mohamed Hamza, Saber Abdo and Osama A. Gaheen

Fire door should withstand a high temperature without deforming. In the current paper, the challenges of improving the behaviour of the conventional fire door were described using…

Abstract

Purpose

Fire door should withstand a high temperature without deforming. In the current paper, the challenges of improving the behaviour of the conventional fire door were described using various internal stiffeners in pair swinging-type fire door.

Design/methodology/approach

The temperature distribution on the outside door surface was measured with distributed eight thermocouples. Subsequently the internal side was cooled with pressurized water hose jet stream of 4 bar. The transient simulation for the thermal and structure analysis was conducted using finite element modelling (FEM) with ANSYS 19. The selected cross sections during numerical simulation were double S, double C and hat omega stiffeners applied to 2.2 m and 3 m door length.

Findings

During the FEM analysis, the maximum deformations were 7.2028, 5.4299, 5.023 cm for double S, double C and hat omega stiffeners for 2.2 m door length and 6.57, 4.26, 2.1094 cm for double S, double C and hat omega stiffeners for 3 m door length. Finally, hat omega gives more than three times reduction in the deformation of door compared to double S stiffeners which provided a reference data to the manufacturers.

Research limitations/implications

The research limitation included the limited number of fire door tests due to the high cost of single test, and the research implication was to achieve an optimal study in fire door design.

Practical implications

Achieving the optimum design for the internal door stiffeners where the hat omega stiffener gives minimum door deformation compared to the other stiffeners was considered the practical implication. The work included two experimental fire door tests according to the standard fire test (ANSI/UL 10C – Positive Pressure of Fire Tests of Door Assemblies) for a door of 2.2 m length with double S stiffeners and a door of 3 m length with hat omega stiffeners, which achieved minimum deformation.

Originality/value

The behavior and mechanical response of door leaf were improved through using internal hat omega stiffeners under fire testing. This study was achieved using FEM in ANSYS 19 for six cases of different lengths and stiffeners for fire doors. The simulation model showed a very close agreement with the experimental results with an error of 0.651% for double S and 1.888% for hat omega.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 September 2011

Mostefa Mimoune, Fatima Mimoune and Mourad Youcef

In this article, we present an analysis of the axial compression behavior of thin circular tube columns filled with concrete. Experimental study was conducted by using one…

Abstract

In this article, we present an analysis of the axial compression behavior of thin circular tube columns filled with concrete. Experimental study was conducted by using one concrete composition and two lengths of columns. Thirteen columns were tested in axial compression. A comparison of experimental results with Algerian design codes DTR-DC, AIJ, DL/T and the empirical equations from the literature was performed. The analysis results for the thin tube show that the axial capacity in compression is underestimated by the DTR-DC. However, DL/T and AIJ codes are in agreement with test results. The results of empirical equations give different results depending on the length columns and section type.

Details

World Journal of Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 October 2016

Gholamreza Kefayati

The thermal-diffusion (Soret) and the diffusion-thermo (Dufour) effects play a crucial role in double diffusive mixed convection in a lid-driven cavity; but they have not been…

Abstract

Purpose

The thermal-diffusion (Soret) and the diffusion-thermo (Dufour) effects play a crucial role in double diffusive mixed convection in a lid-driven cavity; but they have not been studied properly by researchers. The purpose of this paper is to investigate effects of Soret and Dufour parameters on double diffusive laminar mixed convection of shear-thinning and Newtonian fluids in a two-sided lid-driven cavity.

Design/methodology/approach

Finite Difference Lattice Boltzmann method (FDLBM) has been applied to solve the complex problem. This study has been conducted for the certain pertinent parameters of Richardson number (Ri=0.00062-1), power-law index (n=0.2-1), Soret parameter (Sr=−5-5) as Dufour number effects have been investigated from Dr=−5 to 5 at Buoyancy ratio of N=1 and Lewis number of Le=5.

Findings

Results indicate that the augmentation of Richardson number causes heat and mass transfer to decrease. The fall of the power-law index declines heat and mass transfer at Ri=0.00062 and 0.01 in various Dufour and Soret parameters. At Ri=1, the heat and mass transfer rise with the increment of power-law index for Dr=0 and Sr=0. The least effect of power-law index on heat and mass transfer among the studied Richardson numbers was observed at Ri=1. The positive Dufour numbers augment the heat transfer gradually as the positive Soret numbers enhance the mass transfer. The Dr=−5 and Sr=−5 provokes the negative average Nusselt and Sherwood numbers, respectively, to be generated. The least magnitude of the average Nusselt and Sherwood numbers were obtained at Dr=−1 and Sr=−1, respectively.

Originality/value

Soret and Dufour effects in double diffusive mixed convection has not been studied in a lid-driven cavity. In addition. this study has been conducted also for shear-thinning fluids.

Details

Engineering Computations, vol. 33 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 December 2022

Raghuraman T., Veerappan AR. and Shanmugam S.

This paper aims to present the approximate limit pressure solutions for thin-walled shape-imperfect 90° pipe bends. Limit pressure was determined by finite element (FE) limit…

Abstract

Purpose

This paper aims to present the approximate limit pressure solutions for thin-walled shape-imperfect 90° pipe bends. Limit pressure was determined by finite element (FE) limit analysis with the consideration of small geometry change effects.

Design/methodology/approach

The limit pressure of 90° pipe bends with ovality and thinning has been evaluated by geometric linear FE approach. Internal pressure was applied to the inner surface of the FE pipe bend models. When von-Mises stress equals or just exceeds the yield strength of the material, the corresponding pressure was considered as the limit pressure for all models. The current FE methodology was evaluated by the theoretical solution which has been published in the literature.

Findings

Ovality and thinning produced a significant effect on thin-walled pipe bends. The ovality weakened pipe bend performance at any constant thinning, while thinning improved the performance of the bend portion at any constant ovality. The limit pressure of pipe bends under internal pressure increased with an increase in the bend ratio and decreased with an increase in the pipe ratio. With a simultaneous increment in bend radius and reduction in wall thickness, there was a reduction in limit pressure. A new closed-form empirical solution was proposed to evaluate limit pressure, which was validated with published experimental data.

Originality/value

The influences of structural deformation (ovality and thinning) in the limit pressure analysis of 90° pipe bends have not been investigated and reported.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 1994

K.A. Pericleous

The flow development and heat transfer in a differentially heated cavitycontaining a non‐Newtonian fluid is studied using CFD techniques.Investigations are made for a fluid…

Abstract

The flow development and heat transfer in a differentially heated cavity containing a non‐Newtonian fluid is studied using CFD techniques. Investigations are made for a fluid obeying a power‐law type behaviour, for a nominal Rayleigh number of 105. Both dilatant and pseudoplastic regimes are considered and the Nusselt number is obtained for a range of power‐law index values. The results, given in a graphical and tabular form, suggest that deviations from Newtonian stress‐strain behaviour can lead to large changes in overall heat transfer. These changes are due to the behaviour of the wall boundary layers. In the dilatant, or shear‐thickening regime, the isothermal wall layers are thick and slow‐moving; as a consequence, buoyancy induced flow affects the whole of the cavity volume. In contrast, the pseudoplastic (or shear‐thinning) regime leads to thin, fast‐moving wall layers whose effect does not propagate to the core of the cavity which remains stagnant. This behaviour, which is directly attributable to the local value of the fluid viscosity, causes the average Nusselt number to decrease with the power‐law index, n. Pseudoplastic fluids are therefore better at conducting heat than Newtonian fluids, and conversely dilatant fluids are worse. The information contained in this paper is of general interest to workers in heat transfer, but is more specifically relevant to researchers in non‐Newtonian fluids. Example applications include biotechnology, where close temperature control of bio‐cultures in enclosed vessels is required, the food processing industry, the metals casting industry and areas where heat transfer in fine suspensions is required.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 March 2022

Saeed Hatefi Ardakani, Peyman Fatemi Dehaghani, Hesam Moslemzadeh and Soheil Mohammadi

The purpose is to analyze the mechanical behavior of the arterial wall in the degraded region of the arterial wall and to determine the stress distribution, as an important factor…

Abstract

Purpose

The purpose is to analyze the mechanical behavior of the arterial wall in the degraded region of the arterial wall and to determine the stress distribution, as an important factor for predicting the potential failure mechanisms in the wall. In fact, while the collagen fiber degradation process itself is not modeled, zones with reduced collagen fiber content (corresponding to the degradation process) are assumed. To do so, a local weakness in the media layer is considered by defining representative volume elements (RVEs) with different fiber collagen contents in the degraded area to investigate the mechanical response of the arterial wall.

Design/methodology/approach

A three-dimensional (3D) large strain hierarchical multiscale technique, based on the homogenization and genetic algorithm (GA), is utilized to numerically model collagen fiber degradation in a typical artery. Determination of material constants for the ground matrix and collagen fibers in the microscale level is performed by the GA. In order to investigate the mechanical degradation, two types of RVEs with different collagen contents in fibers are considered. Each RVE is divided into two parts of noncollagenous matrix and collagen fiber, and the part of collagen fiber is further divided into matrix and collagen fibrils.

Findings

The von Mises stress distributions on the inner and outer surfaces of the artery and the influence of collagen fiber degradation on thinning of the arterial wall in the degraded area are thoroughly studied. Comparing the maximum stress values on outer and inner surfaces in the degraded region shows that the inner surface is under higher stress states, which makes it more prone to failure. Furthermore, due to the weakness of the artery in the degraded area, it is concluded that the collagen fiber degradation considerably reduces the wall thickness in the degraded area, leading to an observable local inflation across the degraded artery.

Originality/value

Considering that little attention has been paid to multiscale numerical modeling of collagen fiber degradation, in this paper a 3D large strain hierarchical multiscale technique based on homogenization and GA methods is presented. Therefore, while the collagen fiber degradation process itself is not modeled in this study, zones with reduced collagen fiber content (corresponding to the degradation process) are assumed.

Details

Engineering Computations, vol. 39 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 September 2016

Lei Luo, Chenglong Wang, Lei Wang, Bengt Ake Sunden and Sangtao Wang

The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop…

Abstract

Purpose

The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop penalty. The purpose of this paper is to study the effect of dimple depth and dimple diameter on the target surface heat transfer and the inlet to outlet friction factor.

Design/methodology/approach

The study is carried out by using the numerical simulations. The impingement flow is directly impinging on the dimple and released from the film holes after passing the double wall chamber. The ratio between dimple depth and dimple diameter is varied from 0 to 0.4 and the ratio between dimple diameter and impingement hole diameter is ranging from 0.5 to 3. The Reynolds number is between 10,000 and 70,000. Results of the target surface Nusselt number, friction factor and flow structures are included. For convenience of comparison, the double wall cooling structure without the dimple is considered as the baseline.

Findings

It is found that the dimple can effectively enhance the target surface heat transfer due to thinning of the flow boundary layer and flow reattachment as well as flow recirculation outside the dimple near the dimple rim especially for the large Re number condition. However, the stagnation point heat transfer is reduced. It is also found that for a large dimple depth or large dimple diameter, a salient heat transfer reduction occurs for the toroidal vortex. The thermal performance indicates that the intensity of the heat transfer enhancement depends upon the dimple depth and dimple diameter

Originality/value

This is the first time to adopt a dimple into a double wall cooling structure. It suggests that the target surface heat transfer in a double wall cooling structure can be increased by the use of the dimple. However, the heat transfer characteristic is sensitive for the different dimple diameter and dimple depth which may result in a different flow behavior

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 4000