Search results

1 – 10 of over 36000
Article
Publication date: 10 May 2022

Muzhou Ma and Xintian Liu

A large number of data have proved that under the same von Mises equivalent strain condition, the fatigue life under multiaxial non-proportional loading is often much lower than…

Abstract

Purpose

A large number of data have proved that under the same von Mises equivalent strain condition, the fatigue life under multiaxial non-proportional loading is often much lower than the life under multiaxial proportional loading. This is mainly due to the influence of the non-proportional loading path and the additional hardening effect, which lead to a sharp decrease in life.

Design/methodology/approach

The modulus attenuation effect is used to modify the static hardening coefficient, and the predicted value obtained is closer to the additional hardening coefficient obtained from the experiment. A fatigue life model can consider non-proportional paths, and additional hardening effects are proposed. And the model uses multiaxial fatigue test data to verify the validity and adaptability of the new model. The life prediction accuracy and material application range are satisfactory.

Findings

Because loading path and additional hardening of the material affect fatigue life, a new multiaxis fatigue life model based on the critical plane approach is proposed. And introducing a non-proportional additional damage coefficient, the joint influence of the load path and the additional hardening can be considered. The model's life prediction accuracy and material applicability were verified with multiaxial fatigue test data of eight materials and nine loads compared with the prediction accuracy of the Kandil–Brown–Miller (KBM) model and Fatemi–Socie (FS) model.

Originality/value

The physical meaning of the new model is clear, convenient for practical engineering applications.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 May 2017

Tao Cheng, Keqin Yan, Jun-Jie Zheng, Xian-Feng Luo, Ding-Bang Zhang, Wan-Hui Xu, Ren-Jie Hu and Yi Zhang

This paper aims to present a simplified solution method for the elasto-plastic consolidation problem under different stress paths.

Abstract

Purpose

This paper aims to present a simplified solution method for the elasto-plastic consolidation problem under different stress paths.

Design/methodology/approach

First, a double-yield-surface model is introduced as the constitutive model framework, and a partial derivative coefficient sequence is obtained by using numerical approximation using Gauss nuclear function to construct a discretization constitutive model which can reflect the influence of different stress paths. Then, the model is introduced to Biot’s consolidation theory. Volumetric strain of each step as the right-hand term, the continuity equation is simplified as a Poisson equation and the fundamental solution is derived by the variable separation method. Based on it, a semi-analytical and semi-numerical method is presented and implemented in a finite element program.

Findings

The method is a simplified solution that is more convenient than traditional coupling stiffness matrix method. Moreover, the consolidation of the semi-infinite foundation model is analyzed. It is shown that the numerical method is sufficiently stable and can reflect the influence of stress path, loading distribution width and some other factors on the deformation of soil skeleton and pore water pressure.

Originality/value

Original features of this research include semi-numerical semi-analytical consolidation method; pore water pressure and settlements of different stress paths are different; maximum surface uplift at 3.5a; and stress path is the main influence factor for settlement when loading width a > 10 m.

Article
Publication date: 1 March 2000

D.W. Kelly and M.W. Tosh

Design engineers use the term load path to describe, in general terms, the way in which loads path through a structure from the points of application to the points where they are…

2222

Abstract

Design engineers use the term load path to describe, in general terms, the way in which loads path through a structure from the points of application to the points where they are reacted. In contrast, stress trajectories are more clearly identified by the direction of the principal stress vectors at a point. The first author proposed a simple definition of the term load path in 1995 and proposed procedures to determine load paths from two‐dimensional finite element solutions. In this paper, the concept of load paths will be further explored and related to stress trajectories and Michell structures. The insight given when determining the load transfer near a pin‐loaded hole will be demonstrated. In addition a cantilevered beam will be considered and an introduction to plotting load paths in three‐dimensional structures is given.

Details

Engineering Computations, vol. 17 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 April 2022

Qing-Yun Deng, Shun-Peng Zhu, Jin-Chao He, Xue-Kang Li and Andrea Carpinteri

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain…

Abstract

Purpose

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain state. Hence, this study aims how to effectively evaluate the multiaxial random/variable amplitude fatigue life.

Design/methodology/approach

Recent studies on critical plane method under multiaxial random/variable amplitude loading are reviewed, and the computational framework is clearly presented in this paper.

Findings

Some basic concepts and latest achievements in multiaxial random/variable amplitude fatigue analysis are introduced. This review summarizes the research status of four main aspects of multiaxial fatigue under random/variable amplitude loadings, namely multiaxial fatigue criterion, method for critical plane determination, cycle counting method and damage accumulation criterion. Particularly, the latest achievements of multiaxial random/variable amplitude fatigue using critical plane methods are classified and highlighted.

Originality/value

This review attempts to provide references for further research on multiaxial random/variable amplitude fatigue and to promote the development of multiaxial fatigue from experimental research to practical engineering application.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Abstract

Details

Advanced Modeling for Transit Operations and Service Planning
Type: Book
ISBN: 978-0-585-47522-6

Article
Publication date: 1 February 2006

Dragan D. Milasinovic

The paper deals with the rheological‐dynamical analogy in which the three‐dimensional stress‐strain relations are defined under cyclic variation of stress for Hencky’s total…

Abstract

The paper deals with the rheological‐dynamical analogy in which the three‐dimensional stress‐strain relations are defined under cyclic variation of stress for Hencky’s total strain theory. In many practical visco‐elasto‐plastic problems, like as multiaxial fatigue under loading at constant stress amplitude and constant stress ratio, the load‐carrying members are subjected to proportional loading. The classical Hencky’s theory has the advantage of mathematical convenience but its disadvantage is that the deformations predicted for the volume element are independent of the loading path. The existing formulations of the constitutive models for metals are mainly based on the Prandtl‐Reuss incremental theory of elasto‐plasticity, slip theory of plasticity or continuum damage mechanics. They have been shown capable of reproducing satisfactorily most experimental results available for metallic specimens. However, from the theoretical viewpoint little has been said about how these formulations relate to realistic predicting many different inelastic and time dependent problems of two‐ or threedimensional solids, such as fatigue, discontinuous plastic deformation etc. In this paper, fundamentally new aspect of isochronous constitutive relations for Hencky’s theory, which are dependent of the each loading path, is achieved by systematically introducing RDA concept into the continuum framework. Specific inelastic and fatigue formulation of triaxial state of stress is developed and discussed within the new theoretical tool and related to von Mises plasticity..

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 August 2021

Ziao Huang, Xiaoshan Liu, Guoqiu He, Zhiqiang Zhou, Bin Ge, Peiwen Le, Jiaqi Pan and Xiaojun Xu

This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path.

Abstract

Purpose

This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path.

Design/methodology/approach

By keeping the contact pressure and torsional shear cyclic stress amplitude unchanged; the axial cyclic stress amplitude varied from 650 MPa to 850 MPa. The fretting fatigue test was carried out on MTS809 testing machine, and the axial cyclic strain response and fatigue life of the material were analyzed. The fretting zone and fracture surface morphology were observed by scanning electron microscope. The composition of wear debris was detected by energy dispersive X-ray spectrometer.

Findings

In this study, with the increase of axial stress amplitude, 35CrMoA steel will be continuously softened, and the cyclic softening degree increases. The fretting fatigue life decreases unevenly. The fretting scars in the stick region are elongated in the axial direction. The area of fracture crack propagation zone decreases. In addition, the results indicate that wear debris in the slip region is spherical and has higher oxygen content.

Originality/value

There were few literatures about the multiaxial fretting fatigue behavior of 35CrMoA steel, and most scholars focused on the contact pressure. This paper reveals the effect of axial cyclic stress on fretting fatigue and wear of 35CrMoA steel under the elliptical loading path.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 1988

J.B. Martin and W.W. Bird

This paper considers the classical problem of the deformation of an elastic‐plastic body subjected to a prescribed history of loading. Attention is focused on the basis for the…

Abstract

This paper considers the classical problem of the deformation of an elastic‐plastic body subjected to a prescribed history of loading. Attention is focused on the basis for the time discretization of the problem for numerical solution. It is suggested that this discretization can be achieved consistently by conceiving of the problem as a sequence of holonomic, or non‐linear elastic, problems. Complementary work bounds can be given, in special circumstances, for increasing numbers of time steps. The holonomic problem for a single time step is a non‐linear mathematical programming problem: it is shown that the conventional Newton‐Raphson algorithm used in elastic‐plastic finite element analysis can be interpreted as an iterative procedure for finding the least value of the holonomic potential work functional.

Details

Engineering Computations, vol. 5 no. 3
Type: Research Article
ISSN: 0264-4401

Book part
Publication date: 7 October 2015

Md Nuruzzaman

The objective of this study is to investigate how country risk, different political actions from the government and bureaucratic behavior influence the activities in industry…

Abstract

The objective of this study is to investigate how country risk, different political actions from the government and bureaucratic behavior influence the activities in industry supply chains (SCs) in emerging markets. The main objective of this study is to investigate the influence of these external stakeholders’ elements to the demand-side and supply-side drivers and barriers for improving competitiveness of Ready-Made Garment (RMG) industry in the way of analyzing supply chain. Considering the phenomenon of recent change in the RMG business environment and the competitiveness issues this study uses the principles of stakeholder and resource dependence theory and aims to find out some factors which influence to make an efficient supply chain for improving competitiveness. The RMG industry of Bangladesh is the case application of this study. Following a positivist paradigm, this study adopts a two phase sequential mixed-method research design consisting of qualitative and quantitative approaches. A tentative research model is developed first based on extensive literature review. Qualitative field study is then carried out to fine tune the initial research model. Findings from the qualitative method are also used to develop measures and instruments for the next phase of quantitative method. A survey is carried out with sample of top and middle level executives of different garment companies of Dhaka city in Bangladesh and the collected quantitative data are analyzed by partial least square-based structural equation modeling. The findings support eight hypotheses. From the analysis the external stakeholders’ elements like bureaucratic behavior and country risk have significant influence to the barriers. From the internal stakeholders’ point of view the manufacturers’ and buyers’ drivers have significant influence on the competitiveness. Therefore, stakeholders need to take proper action to reduce the barriers and increase the drivers, as the drivers have positive influence to improve competitiveness.

This study has both theoretical and practical contributions. This study represents an important contribution to the theory by integrating two theoretical perceptions to identify factors of the RMG industry’s SC that affect the competitiveness of the RMG industry. This research study contributes to the understanding of both external and internal stakeholders of national and international perspectives in the RMG (textile and clothing) business. It combines the insights of stakeholder and resource dependence theories along with the concept of the SC in improving effectiveness. In a practical sense, this study certainly contributes to the Bangladeshi RMG industry. In accordance with the desire of the RMG manufacturers, the research has shown that some influential constructs of the RMG industry’s SC affect the competitiveness of the RMG industry. The outcome of the study is useful for various stakeholders of the Bangladeshi RMG industry sector ranging from the government to various private organizations. The applications of this study are extendable through further adaptation in other industries and various geographic contexts.

Details

Sustaining Competitive Advantage Via Business Intelligence, Knowledge Management, and System Dynamics
Type: Book
ISBN: 978-1-78441-764-2

Keywords

Open Access
Article
Publication date: 23 May 2022

Yangsheng Ye, Degou Cai, Lin Geng, Hongye Yan, Junkai Yao and Feng Chen

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under…

Abstract

Purpose

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under cyclic load.

Design/methodology/approach

According to the basic framework of critical state soil mechanics and in view of the characteristics of the coarse-grained soil filler for the HSR subgrade to bear the train vibration load repeatedly for a long time, the hyperbolic empirical relationship between particle breakage and plastic work was derived. Considering the influence of cyclic vibration time and stress ratio, the particle breakage correction function of coarse-grained soil filler for the HSR subgrade under cyclic load was proposed. According to the classical theory of plastic mechanics, the shearing dilatation equation of the coarse-grained soil filler for the HSR subgrade considering particle breakage was modified and obtained. A semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the HSR subgrade under cyclic load was further established. The backward Euler method was used to discretize the constitutive equation, build a numerical algorithm of “elastic prediction and plastic modification” and make a secondary development of the program to solve the cyclic compaction model.

Findings

Through the comparison with the result of laboratory triaxial test under the cyclic loading of coarse-grained soil filler for the HSR subgrade, the accuracy and applicability of the cyclic compaction model were verified. Results show that the model can accurately predict the cumulative deformation characteristics of coarse-grained soil filler for the HSR subgrade under the train vibration loading repeatedly for a long time. It considers the effects of particle breakage and stress ratio, which can be used to calculate and analyze the stress and deformation evolution law of the subgrade structure for HSR.

Originality/value

The research can provide a simple and practical method for calculating deformation of railway under cyclic loading.

1 – 10 of over 36000