Search results

1 – 10 of 63
Article
Publication date: 1 May 1963

Protection from Brine Solution. Metal and metal alloys can be successfully protected against the corrosive action of calcium chloride and sodium chloride solutions by adding a zinc

Abstract

Protection from Brine Solution. Metal and metal alloys can be successfully protected against the corrosive action of calcium chloride and sodium chloride solutions by adding a zinc salt and an alkali metal silicate to the solutions. Protection is afforded at a concentration of 1 to 4 g/l silicate and 0.4 g/l zinc salt. Admixture of silicate with zinc chloride enables a higher inhibiting power to be achieved with less than 2 g/l of silicate. Adding alkali metal chromate as well as silicate and zinc salt improves still further the degree of protection afforded to the metal. Local corrosion can occur where the amount of chromate employed is insufficient. A minimum of 5 g Na2CrO4 per m2 is essential, but for dilute solution an alkali metal silicate/zinc salt treatment keeps the metal very clean. As regards uses to which the discovery can be put, the following are typical of those suggested: refrigeration, drying gases, melting ice and snow and, where calcium chloride is used, for soil stabilisation. (Brit. Pat. 903,937, Solvay et Cie., Belgium.)

Details

Anti-Corrosion Methods and Materials, vol. 10 no. 5
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 7 February 2022

Beata Synkiewicz-Musialska, Dorota Szwagierczak, Jan Kulawik and Elżbieta Czerwińska

This paper aims to report on fabrication procedure and presents microstructure and dielectric behaviour of LiZn0.92Cu0.08PO4 ceramic material with Li2CO3 as a sintering aid.

Abstract

Purpose

This paper aims to report on fabrication procedure and presents microstructure and dielectric behaviour of LiZn0.92Cu0.08PO4 ceramic material with Li2CO3 as a sintering aid.

Design/methodology/approach

Substrates based on LiZn0.92Cu0.08PO4 with Li2CO3 addition were prepared via solid-state synthesis, doping, milling, pressing and sintering. Characterization of the composition, microstructure and dielectric properties was performed using X-ray diffractometry, energy dispersive spectroscopy, scanning electron microscopy, impedance spectroscopy in the 100 Hz to 2 MHz range and time-domain spectroscopy in the 0.1–3 THz range.

Findings

Doped LiZnPO4 ceramic, which exhibits a low dielectric constant of 5.9 at 1 THz and low sintering temperature of 800 °C, suitable for low temperature co-fired ceramics (LTCC) technology, was successfully prepared. However, further studies are needed to lower dielectric losses by optimising the doping level, synthesis and sintering conditions.

Originality/value

Search for new low dielectric constant materials applicable in LTCC technology and optimization of processing are essential tasks for developing modern microwave circuits. The dielectric characterization of doped LiZnPO4 ceramic in the terahertz range, which was performed for the first time, is crucial for potential millimetre-wave applications of this substrate material.

Details

Microelectronics International, vol. 39 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 September 2015

Andrea Kalendova and Tereza Hájková

– This paper aims to synthesize anticorrosion pigments containing tungsten for paints intended for corrosion protection of metals.

Abstract

Purpose

This paper aims to synthesize anticorrosion pigments containing tungsten for paints intended for corrosion protection of metals.

Design/methodology/approach

The anticorrosion pigments were prepared by high-temperature, solid-state synthesis from the respective oxides, carbonates and calcium metasilicate. Stoichiometric tungstates and core-shell tungstates with a nonisometric particle shape containing Ca, Sr, Zn, Mg and Fe were synthesized. The pigments were examined by X-ray diffraction analysis and by scanning electron microscopy. Paints based on an epoxy resin and containing the substances at a pigment volume concentration (PVC) = 10 volume per cent were prepared. The paints were subjected to physico-mechanical tests and to tests in corrosion atmospheres. The corrosion test results were compared to those of the paint with a commercial pigment, which is used in many industrial applications.

Findings

The tungstate structure of each pigment was elucidated. The core-shell tungstates exhibit a nonisometric particle shape. The pigments prepared were found to impart a very good anticorrosion efficiency to the paints. A high efficiency was demonstrated for the stoichiometric tungstates containing Fe and Zn and for core-shell tungstates containing Mg and Zn.

Practical implications

The pigments can be used with advantage for the formulation of paints intended for corrosion protection of metals. The pigments also improve the paints’ physical properties.

Originality/value

The use of the pigments in anticorrosion paints for the protection of metals is new. The benefits include the use and the procedure of synthesis of anticorrosion pigments which are free from heavy metals and are acceptable from the environmental protection point of view. Moreover, the core-shell tungstates, whose high efficiency is comparable to that of the stoichiometric tungstates, have lower tungsten content.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 April 2024

Gabi N. Nehme and Najat G. Nehme

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P…

Abstract

Purpose

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P% (phosphorus) and fine-grade molybdenum disulfide (MoS2) 3%, in different mixtures of NLGI 2 lithium stearate grease. Four-ball wear tests were used to evaluate the tribological properties of different grease mixtures such as coefficient of friction and wear. ASTM 2266 as reported by earlier studies is useful, but it is not representative of real-life applications where variable loads and speeds and different break-in periods play a role and could change the results and the nature of tribofilms.

Design/methodology/approach

In this study, chemical and mechanical properties of tribofilms were examined. Moreover, design of experiment was used to examine the data and shorten experimentation time. Research described here is investigating variable loading conditions for real-life applications by using a break-in period of 2 min at the start to minimize asperities and establish a clean surface. Design expert (DOE) analyzes responses to reveal those variables that are single factor and those that are multifactor whether synergistically or antagonistically.

Findings

The results indicated that spectrum loading with break-in period showed reduction in wear when tested in greases with ZDDP/MoS2 combinations. Ramping up or down the load every 7.5 min for a rotational speed of 1,200 rpm and a total of 36,000 revolutions or 30-min time slowed the wear properties of lithium-based grease under different MoS2 and ZDDP concentrations. Experiments indicated that wear was largely dependent on the loading condition and ZDDP additives during specific break-in period at 1,200 rotational speed. It is believed that MoS2 greases perform better under spectrum loading and under constant loading when mixed with ZDDP phosphorus.

Originality/value

This research indicates that there is a synergistic interaction between ZDDP, MoS2 and variable loading especially when a break-in period is applied. The results indicated that wear was largely dependent on the specific speed used with spectrum loading as presented in the energy dispersive spectroscopy and the Auger electron spectroscopy analysis, and thus a 3% MoS2 grease with ZDDP (phosphorus: 0.1 Wt.%) are needed to improve the wear resistance and improve the friction characteristics.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0016/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 1980

S. Guruviah, M. Sundaram, C. Rajagopal and K.S. Rajagopalan

It is shown that complete derusting of structural steel is not necessary if rust converter which can convert adherent rust into a protective coating is used. The performance of…

Abstract

It is shown that complete derusting of structural steel is not necessary if rust converter which can convert adherent rust into a protective coating is used. The performance of the rust converter developed by the authors is described in this paper.

Details

Anti-Corrosion Methods and Materials, vol. 27 no. 5
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 9 May 2023

Yuhai Shen, Yanshuang Wang, Jianghai Lin, Pu Zhang, Xudong Gao and Zijun Wang

This paper aims to determine a suitable anti-wear and friction-reducing compounding additive for lithium greases (LG) by investigating the effects of three single additives…

Abstract

Purpose

This paper aims to determine a suitable anti-wear and friction-reducing compounding additive for lithium greases (LG) by investigating the effects of three single additives potassium borate (PB), zinc dialkyl dithiophosphate and molybdenum dialkyl dithiophosphate (MoDDP) and two compound additives on the friction, wear and extreme pressure properties of LG.

Design/methodology/approach

The effects of the above five additives on the friction, wear and extreme pressure properties of LG were investigated using an SRV-5 friction tester. An X-ray photoelectron spectrometer was used to analyze the various elements presented on the wear surface as well as the types of compounds.

Findings

The compound additive suitable for grease consists of PB and MoDDP, which have excellent friction reduction, anti-wear and extreme pressure properties. And a boundary protection film consisting of oxide and MoS2 is formed on the friction surface, thus improving the friction reduction and anti-wear performance of the grease.

Originality/value

This study can improve the anti-wear and friction-reduction performance of greases, which is of great importance in the field of industrial lubrication. The results of this paper are expected to be useful to researchers and academics of grease.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0350/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 October 2021

Mianran Chao, Ming Jin, Peiwei Gong, Duyi Shen and Lili Zhu

This paper aims to contrastively investigate the antioxidant behavior and tribological performance of a novel multifunctional additive (PBT) and dialkyldithiophosphate (ZDDP) in…

Abstract

Purpose

This paper aims to contrastively investigate the antioxidant behavior and tribological performance of a novel multifunctional additive (PBT) and dialkyldithiophosphate (ZDDP) in complex lithium grease (CLG).

Design/methodology/approach

PBT was successfully synthesized through esterification reaction. The antioxidant behavior of PBT and ZDDP was investigated by thermal analysis, and meanwhile, their tribological performance was evaluated by Optimol SRV-IV oscillating reciprocating friction and wear tester (SRV-IV test) and MRS-1J four-ball tester (Four-ball test). Furthermore, their anticorrosion ability was determined by copper strip corrosion test.

Findings

Four-ball tests showed that the extreme pressure property of PBT was a little inferior to that of ZDDP. Besides, all the other results demonstrated that PBT showed more superior antioxidation stability, friction-reduction and antiwear ability, as well as anticorrosion performance than ZDDP.

Originality/value

This work provides a study of hindered phenol derivative as a multifunctional additive in lubricant grease, which can contribute to the development of substitution of ZDDP.

Details

Industrial Lubrication and Tribology, vol. 73 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 1992

Edgar S. Lower

An investigation has been carried out of the catalytic action of iron dipalmitate on the polymerisation of styrene, and of lauryl mercaptan and oleic acid, and polystyrene having…

Abstract

An investigation has been carried out of the catalytic action of iron dipalmitate on the polymerisation of styrene, and of lauryl mercaptan and oleic acid, and polystyrene having good particle size distribution has been obtained by the polymerisation of styrene in the presence of stearic acid, which can also act as a catalyst in the bulk polymerisation of this monomer, optionally used along with styrene oxide. The fatty acid has also been employed along with diphenylamine and hydroxyacetophenone, to give catalysts systems for the polymerisation of styrene monomer, the acid ensuring brilliance in the moulded polymer. Stearoyl peroxide functions as a catalyst in the bulk polymerisation of styrene, whilst zinc stearate can work as a catalyst to the thermal degradation of polystyrene.

Details

Pigment & Resin Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 March 1963

E.R. BRAITHWAITE and G.W. ROWE

LONG before man learnt to make fire by the friction of wood, he experienced the burden of friction in dragging home his kill. Perhaps it is not too fanciful to suppose that the…

Abstract

LONG before man learnt to make fire by the friction of wood, he experienced the burden of friction in dragging home his kill. Perhaps it is not too fanciful to suppose that the torn sides of his beast gave the first solid lubricant. Blood and mutton fat were seriously recommended as lubricants for church bell trunnions as recently as the 17th century. Indoed we still reckon fatty acids the best of all boundary lubricants. The range of man's activities has increased enormously in the present century, and particularly in the last few decades. Men have circled the earth in space; a space ship is on its way to examine another planet; terrestrial man is boring to the bottom of the earth's crust; others have descended to the depths of the ocean, and oven established a home on the floor of the Mediterranean, Speeds have increased by factors of thousands, temperatures range from near absolute zero to thousands of degrees; and a new environment of high‐intensity nuclear radiation has been created. Still, objects must move over and along each other in these exotic conditions; and to a large extent solid lubricants can provide the answer to the frictional problems.

Details

Industrial Lubrication and Tribology, vol. 15 no. 3
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 1 February 2002

Petr Mošner, Andrea Kalendová, Ladislav Koudelka and Petr Kalenda

Four pigments derived from the SrO–ZnO–B2O3–P2O5 system were tested in a solvent coating system based on a modified alkyd resin and water‐borne system based on a styrene–acrylate…

Abstract

Four pigments derived from the SrO–ZnO–B2O3–P2O5 system were tested in a solvent coating system based on a modified alkyd resin and water‐borne system based on a styrene–acrylate dispersion. The pigments pastes were applied on activated steel panels and after conditioning standard corrosion tests were performed comprising the determination of resistance to humid atmospheres containing SO2 and also the resistance to a neutral salt fog. Test results were compared with those performed on the coatings prepared with standard anticorrosion pigments of Zn3(PO4)2.2H2O, Ca(BO2)2, Zn(BO2)2 a Ba(BO2)2. Some tested pigments revealed at least comparable corrosion‐inhibition properties with standard pigments. Coatings based on alkyd resins gave better results than those prepared form water‐borne system.

Details

Pigment & Resin Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 63