Search results

1 – 10 of 834
Article
Publication date: 28 October 2014

Jun Yang and Jing Liu

This paper aims to demonstrate the practicability of the liquid metal printer, developed in the authors’ laboratory, in the direct manufacture and assembly of circuit boards at…

Abstract

Purpose

This paper aims to demonstrate the practicability of the liquid metal printer, developed in the authors’ laboratory, in the direct manufacture and assembly of circuit boards at the end customer side using GaIn24.5 alloy as printing ink at room temperature.

Design/methodology/approach

A practical procedure for printing a real designed frequency modulation (FM) radio circuit on flexible and transparent substrate using liquid metal printer was established. Necessary electronic components are then assembled on this circuit board. To enhance the mechanical stability of the FM radio circuit board, we further package the circuit board using room temperature vulcanizing silicone rubber. Finally, an efficient way to recycle the liquid metal ink and electronic components is presented at the end of circuit board’s life cycle.

Findings

Methods of designing the circuit patterns that are applicable to liquid metal printer are similar to the conventional printed circuit board (PCB) designing strategies. The procedure of applying liquid metal printer for printing the circuits is entirely automatic, cost-effective and highly time-saving, which allows the user to print out desired device in a moment. Through appropriate packaging, the FM radio circuit board can be flexibly used. These PCBs own many outstanding merits including easy modification and stretchability. Nearly all liquid metal ink and components can be recycled.

Originality/value

The present end-customer-oriented liquid metal printing opens the way for large-scale personal electronics manufacture which is expected to initiate many emerging applications in education, design, industry, entertainment and more maker targets.

Article
Publication date: 15 August 2019

Arivarasi A. and Anand Kumar

The purpose of this paper is to describe, review, classify and analyze the current challenges in three-dimensional printing processes for combined electrochemical and microfluidic…

Abstract

Purpose

The purpose of this paper is to describe, review, classify and analyze the current challenges in three-dimensional printing processes for combined electrochemical and microfluidic fabrication areas, which include printing devices and sensors in specified areas.

Design/methodology/approach

A systematic review of the literature focusing on existing challenges is carried out. Focused toward sensors and devices in electrochemical and microfluidic areas, the challenges are oriented for a discussion exploring the suitability of printing varied geometries in an accurate manner. Classifications on challenges are based on four key categories such as process, material, size and application as the printer designs are mostly based on these parameters.

Findings

A key three-dimensional printing process methodologies have their unique advantages compared to conventional printing methods, still having the challenges to be addressed, in terms of parameters such as cost, performance, speed, quality, accuracy and resolution. Three-dimensional printing is yet to be applied for consumer usable products, which will boost the manufacturing sector. To be specific, the resolution of printing in desktop printers needs improvement. Printing scientific products are halted with prototyping stages. Challenges in three-dimensional printing sensors and devices have to be addressed by forming integrated processes.

Research limitations/implications

The research is underway to define an integrated process-based on three-dimensional Printing. The detailed technical details are not shared for scientific output. The literature is focused to define the challenges.

Practical implications

The research can provide ideas to business on innovative designs. Research studies have scope for improvement ideas.

Social implications

Review is focused on to have an integrated three-dimensional printer combining processes. This is a cost-oriented approach saving much of space reducing complexity.

Originality/value

To date, no other publication reviews the varied three-dimensional printing challenges by classifying according to process, material, size and application aspects. Study on resolution based data is performed and analyzed for improvements. Addressing the challenges will be the solution to identify an integrated process methodology with a cost-effective approach for printing macro/micro/nano objects and devices.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 June 2021

Shirun Ding and Bing Feng Ng

This study aims to examine on-site particle concentration levels due to emissions from a wide spectrum of additive manufacturing techniques, including polymer-based material…

Abstract

Purpose

This study aims to examine on-site particle concentration levels due to emissions from a wide spectrum of additive manufacturing techniques, including polymer-based material extrusion, metal and polymer-based powder bed fusion, directed energy deposition and ink-based material jetting.

Design/methodology/approach

Particle concentrations in the operating environments of users were measured using a combination of particle sizers including the TSI 3910 Nano SMPS (10–420 nm) and the TSI 3330 optical particle sizer (0.3–10 µm). Also, fumes from a MEX printer during printing were directly captured using laser imaging method.

Findings

The number and mass concentration of submicron particles emitted from a desktop open-type MEX printer for acrylonitrile-butadiene-styrene and polyvinyl alcohol approached and significantly exceeded the nanoparticle reference limits, respectively. Through laser imaging, fumes were observed to originate from the printer nozzle and from newly deposited layers of the desktop MEX printer. On the other hand, caution should be taken in the pre-processing of metal and polymer powder. Specifically, one to ten micrometers of particles were observed during the sieving, loading and cleaning of powder, with transient mass concentrations ranging between 150 and 9,000 µg/m3 that significantly exceeded the threshold level suggested for indoor air quality.

Originality/value

Preliminary investigation into possible exposures to particle emissions from different 3D printing processes was done, which is useful for the sustainable development of the 3D printing industry. In addition, automatic processes that enable “closed powder cycle” or “powder free handling” should be adopted to prevent users from unnecessary particle exposure.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2003

Behrokh Khoshnevis, Bahram Asiabanpour, Mehdi Mojdeh and Kurt Palmer

Selective inhibition of sintering (SIS) is a layered fabrication process which is capable of rapidly producing accurate functional parts out of polymers and metals using a…

1081

Abstract

Selective inhibition of sintering (SIS) is a layered fabrication process which is capable of rapidly producing accurate functional parts out of polymers and metals using a relatively inexpensive machine. This article presents a brief overview of the research and development aimed at establishing the feasibility and the potential of the process.

Details

Rapid Prototyping Journal, vol. 9 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 June 2018

Sonette Du Preez, Alyson Johnson, Ryan F. LeBouf, Stephanus J.L. Linde, Aleksandr B. Stefaniak and Johan Du Plessis

This paper aims to measure exposures to airborne contaminants during three-dimensional (3-D) printing and post-processing tasks in an industrial workplace.

Abstract

Purpose

This paper aims to measure exposures to airborne contaminants during three-dimensional (3-D) printing and post-processing tasks in an industrial workplace.

Design/methodology/approach

Contaminant concentrations were assessed using real-time particle number (0.007 to 1 µm) and total volatile organic compound (TVOC) monitors and thermal desorption tubes during various tasks at a manufacturing facility using fused deposition modeling (FDMTM) 3-D printers. Personal exposures were measured for two workers using nanoparticle respiratory deposition samplers for metals and passive badges for specific VOCs.

Findings

Opening industrial-scale FDMTM 3-D printer doors after printing, removing desktop FDMTM 3-D printer covers during printing, acetone vapor polishing (AVP) and chloroform vapor polishing (CVP) tasks all resulted in transient increases in levels of submicrometer-scale particles and/or organic vapors, a portion of which enter the workers’ breathing zone, resulting in exposure. Personal exposure to quantifiable levels of metals in particles <300 nm were 0.02 mg/m3 for aluminum, chromium, copper, iron and titanium during FDMTM printing. Personal exposures were 0.38 to 6.47 mg/m3 for acetone during AVP and 0.18 mg/m3 for chloroform during CVP.

Originality/value

Characterization of tasks provided insights on factors that influenced contaminant levels, and in turn exposures to various particles, metals < 300 nm and organic vapors. These concentration and exposure factors data are useful for identifying tasks and work processes to consider for implementation of new or improved control technologies to mitigate exposures in manufacturing facilities using FDMTM 3-D printers.

Details

Rapid Prototyping Journal, vol. 24 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Case study
Publication date: 20 January 2017

Wendell E. Dunn and Scott Shane

This case describes how eight entrepreneurs discover different opportunities for new businesses to exploit a single technological invention. The case focuses on the process of…

Abstract

This case describes how eight entrepreneurs discover different opportunities for new businesses to exploit a single technological invention. The case focuses on the process of entrepreneurial discovery and its implications for the creation of new firms. Many of the teaching materials on entrepreneurship assume that entrepreneurs have already discovered an opportunity. While these materials provide useful information about the process of creating new enterprises, they miss the crucial first step in the entrepreneurial process: identifying an opportunity. The case illustrates the theoretical concept of the role of information in the discovery of entrepreneurial opportunities. It can be used in a class on entrepreneurship or management of technology.

Details

Darden Business Publishing Cases, vol. no.
Type: Case Study
ISSN: 2474-7890
Published by: University of Virginia Darden School Foundation

Keywords

Article
Publication date: 18 April 2022

Daniel Luiz de Mattos Nascimento, Renan Mury Nepomuceno, Rodrigo Goyannes Gusmão Caiado, Juan Manuel Maqueira, José Moyano-Fuentes and Jose Arturo Garza-Reyes

Industries and businesses are pursuing Industry 4.0 technologies as well as adopting a circular approach focused on improving manufacturing processes through the reduction of…

1292

Abstract

Purpose

Industries and businesses are pursuing Industry 4.0 technologies as well as adopting a circular approach focused on improving manufacturing processes through the reduction of wastes, CO2 emissions and mineral exploration to mitigate the impact of climate change. In this sense, additive manufacturing (AM), often referred to as 3D printing, can play a key role in the closed-loop of operations. However, academics and practitioners have scarcely discussed the feasibility of implementing AM alongside circular economy (CE) practices, the techniques and methods that this would require, or how AM could benefit sustainability and circularity. To address these gaps, this paper proposes a novel circular sustainable 3D printing model for scrap recycling in the automotive industry.

Design/methodology/approach

The methodology uses a literature review-based approach followed by empirical research using metal scraps as the raw material for fabricating a powder to input a metal 3D printer for generating sustainable automotive components. A conceptual sustainable circular model for the automotive industry is proposed. Next, is conducted a focus group comprises AM and automotive industry experts for evaluations.

Findings

The results indicate that the proposed model can be used to reintroduce waste back into the manufacturing chain as raw material for the on-demand manufacture and supply of automotive components and that it may also have social and environmental implications.

Originality/value

This paper’s contributions are threefold: it explores the combined use of Industry 4.0 (I4.0), CE and sustainability in the automotive industry, develops a new model to support the circularity and sustainability of the scrap chain and proposes the use of AM as a catalyst of CE practices by reproducing recycled components with a 3D printer for prototypes or fully functioning components.

Details

Journal of Manufacturing Technology Management, vol. 33 no. 5
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 16 March 2015

Payman Torabi, Matthew Petros and Behrokh Khoshnevis

The purpose of this paper is to study the implementation of a commercial piezoelectric printhead in the fabrication of high-resolution metal parts selective inhibition sintering…

Abstract

Purpose

The purpose of this paper is to study the implementation of a commercial piezoelectric printhead in the fabrication of high-resolution metal parts selective inhibition sintering (SIS-metal). SIS is a disruptive platform additive manufacturing (AM) process capable of printing parts from polymer, metal and ceramic base materials.

Design/methodology/approach

The developed system in this paper replaces the single-nozzle solenoid valve previously used in the SIS-metal process and allows for the fabrication of high-resolution parts. A design of experiments approach is utilized to study the effects of important factors in inhibitor deposition. These factors include: composition of the inhibitor, quality of the print and the amount of fluid deposited for each layer. Based on the results of these experiments, parameters have been identified for the creation of 3D parts.

Findings

The results of this study were based on the fine tuning of parameters in the updated SIS-metal machine which culminated in the fabrication of complex metallic parts. This study serves as an entry point to important areas of research in need of careful future consideration. These areas include but are not limited to machine robustness, mechanical properties, shrinkage and surface quality.

Originality/value

SIS-metal is a novel AM process developed by the CRAFT Laboratories team at the University of Southern California with potential to compete existing metal AM processes in terms of quality, price, materials and speed. The machine developed in this study signifies an order of magnitude improvement in the resolution and quality of SIS-metal parts which are comparable to those fabricated by other AM processes.

Details

Rapid Prototyping Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 May 2022

Omar Alageel

Three-dimensional (3D) printing technologies have gained attention in dentistry because of their ability to print objects with complex geometries with high precision and accuracy…

Abstract

Purpose

Three-dimensional (3D) printing technologies have gained attention in dentistry because of their ability to print objects with complex geometries with high precision and accuracy, as well as the benefits of saving materials and treatment time. This study aims to explain the principles of the main 3D printing technologies used for manufacturing dental prostheses and devices, with details of their manufacturing processes and characteristics. This review presents an overview of available 3D printing technologies and materials for dental prostheses and devices.

Design/methodology/approach

This review was targeted to include publications pertaining to the fabrication of dental prostheses and devices by 3D printing technologies between 2012 and 2021. A literature search was carried out using the Web of Science, PubMed, Google Scholar search engines, as well as the use of a manual search.

Findings

3D printing technologies have been used for manufacturing dental prostheses and devices using a wide range of materials, including polymers, metals and ceramics. 3D printing technologies have demonstrated promising experimental outcomes for the fabrication of dental prostheses and devices. However, further developments in the materials for fixed dental prostheses are required.

Originality/value

3D printing technologies are effective and commercially available for the manufacturing of polymeric and metallic dental prostheses. Although the printing of dental ceramics and composites for dental prostheses is promising, further improvements are required.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 September 2013

Robert Bogue

– This article aims to provide an introduction to 3D printing technology and its applications.

11777

Abstract

Purpose

This article aims to provide an introduction to 3D printing technology and its applications.

Design/methodology/approach

Following an introduction, this first describes the many different 3D printing technologies and then discusses a number of existing and emerging applications. Finally, brief conclusions are drawn.

Findings

This shows that 3D printing technologies have evolved rapidly in recent years and can be use with a wide range of different materials. In addition to rapid prototyping, the dominant use in the past, they are now being used in all manner of manufacturing applications in a diversity of industries. In the future 3D printing may change the way many products are developed and produced and herald an era of “personal manufacturing”.

Originality/value

This article provides a timely review of 3D printing technology and its applications.

Details

Assembly Automation, vol. 33 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 834