Search results

1 – 10 of 52
Open Access
Article
Publication date: 5 November 2021

Darko Lovrec and Vito Tič

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding…

2883

Abstract

Purpose

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding the electrical properties of the fluid used. The latter is closely related to the purpose, type, structure, and conditions of use of a hydraulic system, especially the powertrain design and fluid condition monitoring. The insulating capacity of the hydraulic fluid is important in cases where the electric motor of the pump is immersed in the fluid. In other cases, on the basis of changing the electrical conductive properties of the hydraulic fluid, we can refer its condition, and, on this basis, the degree of degradation.

Design/methodology/approach

The paper first highlights the importance of knowing the electrical properties of hydraulic fluids and then aims to compare these properties, such as the breakdown voltage of commonly used hydraulic mineral oils and newer ionic fluids suitable for use as hydraulic fluids.

Findings

Knowledge of this property is crucial for the design approach of modern hydraulic compact power packs. In the following, the emphasis is on the more advanced use of known electrical quantities, such as electrical conductivity and the dielectric constant of a liquid.

Originality/value

Based on the changes in these quantities, we have the possibility of real-time monitoring the hydraulic fluid condition, on the basis of which we judge the degree of fluid degradation and its suitability for further use.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2414

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 4 September 2023

Sara Perotti and Claudia Colicchia

The purpose of this paper is to propose a framework of green strategies as a combination of energy-efficiency measures and solutions towards environmental impact reduction for…

1898

Abstract

Purpose

The purpose of this paper is to propose a framework of green strategies as a combination of energy-efficiency measures and solutions towards environmental impact reduction for improving environmental sustainability at logistics sites. Such measures are examined by discussing the related impacts, motivations and barriers that could influence the measures' adoption. Starting from the framework, directions for future research in this field are outlined.

Design/methodology/approach

The proposed framework was developed starting from a systematic literature review (SLR) approach on 60 papers published from 2008 to 2022 in international peer-reviewed journals or conference proceedings.

Findings

The framework identifies six main areas of intervention (“green strategies”) towards green warehousing, namely Building, Utilities, Lighting, Material Handling and Automation, Materials and Operational Practices. For each strategy, specific energy-efficiency measures and solutions towards environmental impact reduction are further pinpointed. In most cases, “green-gold” measures emerge as the most appealing, entailing environmental and economic benefits at the same time. Finally, for each measure the relationship with the measures' primary impacts is discussed.

Originality/value

From an academic viewpoint, the framework fills a major gap in the scientific literature since, for the first time, this study elaborates the concept of green warehousing as a result of energy-efficiency measures and solutions towards environmental impact reduction. A classification of the main areas of intervention (“green strategies”) is proposed by adopting a holistic approach. From a managerial perspective, the paper addresses a compelling need of practitioners – e.g. logistics service providers (LSPs), manufacturers and retailers – for practices and solutions towards greener warehousing processes to increase energy efficiency and decrease the environmental impact of the practitioners' logistics facilities. In this sense, the proposed framework can provide valuable support for logistics managers that are about to approach the challenge of turning the managers' warehouses into greener nodes of the managers' supply chains.

Details

The International Journal of Logistics Management, vol. 34 no. 7
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 12 May 2020

Tomasz Matusiak, Krzysztof Swiderski, Jan Macioszczyk, Piotr Jamroz, Pawel Pohl and Leszek Golonka

The purpose of this paper is to present a study on miniaturized instruments for analytical chemistry with a microplasma as the excitation source.

Abstract

Purpose

The purpose of this paper is to present a study on miniaturized instruments for analytical chemistry with a microplasma as the excitation source.

Design/methodology/approach

The atmospheric pressure glow microdischarge could be ignited inside a ceramic structure between a solid anode and a liquid cathode. As a result of the cathode sputtering of the solution, it was possible to determine its chemical composition by analyzing the emission spectra of the discharge. Cathodes with microfluidic channels and two types of anodes were constructed. Both types were tested through experimentation. Impact of the electrodes geometry on the discharge was established. A cathode aperture of various sizes and anodes made from different materials were used.

Findings

The spectroscopic properties of the discharge and its usefulness in the analysis depended on the ceramic structure. The surface area of the cathode aperture and the flow rate of the solution influence on the detection limits (DLs) of Zn and Cd.

Originality/value

Constructed ceramic structures were able to excite elements and their laboratory-size systems. During the experiments, Zn and Cd were detected with DLs 0.024 and 0.053 mg/L, respectively.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 19 March 2020

Laura Jasińska, Krzysztof Szostak, Milena Kiliszkiewicz, Piotr Słobodzian and Karol Malecha

The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with…

2375

Abstract

Purpose

The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with microfluidic channels for sensor applications. Normally, conductive patterns are deposited on an LTCC substrate by means of the screen-printing technique, but in this paper applicability of ink-jet printing in connection with LTCC materials is demonstrated.

Design/methodology/approach

A simple microfluidic LTCC sensor based on the microstrip ring resonator was designed. It was assumed the micro-channel, located under the ring, was filled with a mixture of DI water and ethanol, and the operating frequency of the resonator was tuned to 2.4 GHz. The substrate was fabricated by standard LTCC process, and the pattern of the microstrip ring resonator was deposited over the substrate by means of an ink-jet printer. Performance of the sensor was assessed with the use of various volumetric concentrations of DI water and ethanol. Actual changes in concentration were detected by means of microwave measurements.

Findings

It can be concluded that ink-jet printing is a feasible technique for fast fabrication of micro-strip circuits on LTCC substrates, including microfluidic components. Further research needs to be conducted to improve the reliability, accuracy and performance of this technique.

Originality/value

The literature shows the use of ink-jet printing for producing various conductive patterns in different applications. However, the idea to replace the screen-printing with the ink-jet printing on LTCC substrates in connection with microwave-microfluidic applications is not widely studied. Some questions concerning accuracy and reliability of this technique are still open.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 3 April 2017

Xin Li, Jianzhong Shang and Zhuo Wang

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing…

15523

Abstract

Purpose

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing (ALM) technology of intelligent materials and the development of the 4D printing technology. Also, an arm-type ALM technology of shape memory polymer (SMP) with thermosetting polyurethane is briefly introduced.

Design/methodology/approach

This paper begins with an overview of the development and applications of intelligent materials around the world and the 4D printing technology. Then, the authors provide a brief outline of their research on arm-type ALM technology of SMP with thermosetting polyurethane.

Findings

The paper provides the recent developments and applications of intelligent materials and 4D printing technology. Then, it is suggested that intelligent materials mixed with different functional materials will be developed, and these types of materials will be more suitable for 4D printing.

Originality/value

This paper overviews the current developments and applications of intelligent materials and its use in 4D printing technology, and briefly states the authors’ research on arm-type ALM technology of SMP with thermosetting polyurethane.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 6 March 2020

Cornelis van Dorsser and Poonam Taneja

The paper aims to present an integrated foresight framework and method to support decision-makers who are confronted with today’s complex and rapidly changing world. The method…

3369

Abstract

Purpose

The paper aims to present an integrated foresight framework and method to support decision-makers who are confronted with today’s complex and rapidly changing world. The method aims at reducing the degree of uncertainty by addressing the inertia or duration of unfolding trends and by placing individual trends in a broader context.

Design/methodology/approach

The paper presents a three-layered framework and method for assessing megatrends based on their inertia or duration. It suggests that if long-term trends and key future uncertainties are studied in conjunction at a meta-level and placed in a broader multi-layered framework of trends, it can result in new insights.

Findings

The application of the proposed foresight method helps to systematically place a wide range of unrelated trends and key uncertainties in the context of a broader framework of trends, thereby improving the ability to understand the inertia, direction and mutual interaction of these trends.

Research limitations/implications

The elaboration of identified trends and key uncertainties is partly case-specific and subject to interpretation. It is aimed at illustrating the potential use of the framework.

Practical implications

The paper presents a new approach that may, by itself or in combination with existing foresight methods, offer new means for anticipating future developments.

Social implications

The use of the proposed framework has potential to provide better insight in the complexity of today’s rapid-changing world and the major transitions taking place. It aims to result in sharper foresight by reducing epistemic uncertainty for decision-makers.

Originality/value

The paper demonstrates how megatrends, Kondratieff waves and century-long trends can be placed in an integrated framework and analysed in conjunction.

Details

foresight, vol. 22 no. 2
Type: Research Article
ISSN: 1463-6689

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 12 March 2024

Cristina Mele and Tiziana Russo-Spena

In this article, we reflect on how smart technology is transforming service research discourses about service innovation and value co-creation. We adopt the concept of technology…

Abstract

Purpose

In this article, we reflect on how smart technology is transforming service research discourses about service innovation and value co-creation. We adopt the concept of technology smartness’ to refer to the ability of technology to sense, adapt and learn from interactions. Accordingly, we seek to address how smart technologies (i.e. cognitive and distributed technology) can be powerful resources, capable of innovating in relation to actors’ agency, the structure of the service ecosystem and value co-creation practices.

Design/methodology/approach

This conceptual article integrates evidence from the existing theories with illustrative examples to advance research on service innovation and value co-creation.

Findings

Through the performative utterances of new tech words, such as onlife and materiality, this article identifies the emergence of innovative forms of agency and structure. Onlife agency entails automated, relational and performative forms, which provide for new decision-making capabilities and expanded opportunities to co-create value. Phygital materiality pertains to new structural features, comprised of new resources and contexts that have distinctive intelligence, autonomy and performativity. The dialectic between onlife agency and phygital materiality (structure) lies in the agencement of smart tech–enabled value co-creation practices based on the notion of becoming that involves not only resources but also actors and contexts.

Originality/value

This paper proposes a novel conceptual framework that advances a tech-based ecology for service ecosystems, in which value co-creation is enacted by the smartness of technology, which emerges through systemic and performative intra-actions between actors (onlife agency), resources and contexts (phygital materiality and structure).

Details

Journal of Service Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-5818

Keywords

1 – 10 of 52