Search results

1 – 8 of 8
Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 April 2024

K.G. Rumesh Samarawickrama, U.G. Samudrika Wijayapala and C.A. Nandana Fernando

The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric…

Abstract

Purpose

The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric using three mordants.

Design/methodology/approach

The colouring agents were extracted from the leaves of Lannea coromandelica using an aqueous extraction method. The extract was characterized using analysis methods of pH, gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and cyclic voltammetry measurement. The extract was applied to cotton fabric samples using a non-mordant and three mordants under the two mordanting methods. The dyeing performance of the extracted colouring agent was evaluated using colour fastness properties, colour strength (K/S) and colour space (CIE Lab).

Findings

The aqueous dye extract showed reddish-brown colour, and its pH was 5.94. The GC-MS analysis revealed that the dye extract from the leaves of Lannea coromandelica contained active chemical compounds. The UV-vis and FTIR analyses found that groups influenced the reddish-brown colour of the dye extraction. The cyclic voltammetry measurements discovered the electrochemical properties of the dye extraction. The mordanted fabric samples showed better colour fastness properties than the non-mordanted fabric sample. The K/S and CIE Lab results indicate that the cotton fabric samples dyed with mordants showed more significant dye affinities than non-mordanted fabric samples.

Originality/value

Researchers have never discovered that the Lannea coromandelica leaf extract is a natural dye for cotton fabric dyeing. The findings of this study showed that natural dyes extracted from Lannea coromandelica leaf could be an efficient colouring agent for use in cotton fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 April 2024

Roberto Salvatore Di Fede, Marivel Gonzalez-Hernandez, Eva Parga-Dans, Pablo Alonso Gonzalez, Purificación Fernández-Zurbano, María Cristina Peña del Olmo and María-Pilar Sáenz-Navajas

The main aim of this study is to characterise and identify specific chemo-sensory profiles of ciders from the Canary Islands (Spain).

Abstract

Purpose

The main aim of this study is to characterise and identify specific chemo-sensory profiles of ciders from the Canary Islands (Spain).

Design/methodology/approach

Commercial samples of Canary ciders were compared to ciders from the Basque Country and Asturias. In total, 18 samples were studied, six for each region. The analysis comprised their sensory profiling and chemical characterisation of their polyphenolic profile, volatile composition, conventional chemical parameters and CIELAB colour coordinates. In parallel, the sensory profile of the samples from the Canary Islands was first compared with their Basque and Asturian counterparts by labelled sorting task. Then, their specific aroma profile was characterised by flash profile. Further quantification of sensory-active compounds was performed by GC–MS and GC-FID to identify the volatile compounds involved in their aroma profile.

Findings

Results show that Canary ciders present a specific chemical profile characterised by higher levels of ethanol, and hydroxycinnamic acids, mainly t-ferulic, t-coumaric and neochologenic acids, and lower levels of volatile and total acidity than their Asturian and Basque counterparts. They also present a specific aroma profile characterised by fruity aroma, mainly fruit in syrup and confectionary, and sweet flavours related to their highest levels of vinylphenols formed by transformation of hydroxycinnamic acids.

Originality/value

An integrated strategy to explore the typicity of the currently existing Canary ciders in the market was developed. The results are important in that they will help other regions to identify specific typical chemo-sensory profiles and to promote the creation of certifications supporting regional typicity.

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 30 November 2023

Moses Asori, Emmanuel Dogbey, Solomon Twum Ampofo and Julius Odei

Current evidence indicates that humans and animals are at increased risk of multiple health challenges due to microplastic (MP) profusion. However, mitigation is constrained by…

Abstract

Purpose

Current evidence indicates that humans and animals are at increased risk of multiple health challenges due to microplastic (MP) profusion. However, mitigation is constrained by inadequate scientific data, further aggravated by the lack of evidence in many African countries. This review therefore synthesized evidence on the current extent of MP pollution in Africa and the analytical techniques for reporting.

Design/methodology/approach

A literature search was undertaken in research databases. Medical subject headings (MeSH) terms and keywords were used in the literature search. The authors found 38 studies from 10 countries that met the inclusion criteria.

Findings

Marine organisms had MPs prevalence ranging from 19% to 100%, whereas sediments and water samples had between 77 and 100%. The most common and dominant polymers included polypropylene and polyethylene.

Practical implications

This review shows that most studies still use methods that are prone to human errors. Therefore, the concentration of MPs is likely underestimated, even though the authors’ prevalence evaluations show MPs are still largely pervasive across multiple environmental matrices. Also, the study reveals significant spatial disparity in MP research across the African continent, showing the need for further research in other African countries.

Originality/value

Even though some reviews have assessed MPs pollution in Africa, they have not evaluated sample prevalence, which is necessary to understand not only concentration but pervasiveness across the continent. Secondly, this study delves deeper into various methods of sampling, extraction and analysis of MPs, as well as limitations and relevant recommendations.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 April 2024

Xiaotong Zhang and Qiu Zhang

The purpose of this study is to develop a molecular imprinting electrochemical sensor for the specific detection of the anticancer drug amsacrine. The sensor used a composite of…

Abstract

Purpose

The purpose of this study is to develop a molecular imprinting electrochemical sensor for the specific detection of the anticancer drug amsacrine. The sensor used a composite of bacterial cellulose (BC) and silver nanoparticles (AgNPs) as a platform for the immobilization of a molecularly imprinted polymer (MIP) film. The main objective was to enhance the electrochemical properties of the sensor and achieve a high level of selectivity and sensitivity toward amsacrine molecules in complex biological samples.

Design/methodology/approach

The composite of BC-AgNPs was synthesized and characterized using FTIR, XRD and SEM techniques. The MIP film was molecularly imprinted to selectively bind amsacrine molecules. Electrochemical characterization, including cyclic voltammetry and electrochemical impedance spectroscopy, was performed to evaluate the modified electrode’s conductivity and electron transfer compared to the bare glassy carbon electrode (GCE). Differential pulse voltammetry was used for quantitative detection of amsacrine in the concentration range of 30–110 µM.

Findings

The developed molecular imprinting electrochemical sensor demonstrated significant improvements in conductivity and electron transfer compared to the bare GCE. The sensor exhibited a linear response to amsacrine concentrations between 30 and 110 µM, with a low limit of detection of 1.51 µM. The electrochemical response of the sensor showed remarkable changes before and after amsacrine binding, indicating the successful imprinting of amsacrine in the MIP film. The sensor displayed excellent selectivity for amsacrine in the presence of interfering substances, and it exhibited good stability and reproducibility.

Originality/value

This study presents a novel molecular imprinting electrochemical sensor design using a composite of BC and AgNPs as a platform for MIP film immobilization. The incorporation of BC-AgNPs improved the sensor’s electrochemical properties, leading to enhanced sensitivity and selectivity for amsacrine detection. The successful imprinting of amsacrine in the MIP film contributes to the sensor's specificity. The sensor's ability to detect amsacrine in a concentration range relevant to anticancer therapy and its excellent performance in complex sample matrices add significant value to the field of electrochemical sensing for pharmaceutical analysis.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 8 of 8