Search results

1 – 10 of 274
Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 21 November 2023

Pham Duc Tai, Krit Jinawat and Jirachai Buddhakulsomsiri

Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a…

Abstract

Purpose

Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a trade-off between financial and environmental aspects of these decisions, this paper aims to determine an optimal location, among candidate locations, of a new logistics center, its capacity, as well as optimal network flows for an existing distribution network, while concurrently minimizing the total logistics cost and gas emission. In addition, uncertainty in transportation and warehousing costs are considered.

Design/methodology/approach

The problem is formulated as a fuzzy multiobjective mathematical model. The effectiveness of this model is demonstrated using an industrial case study. The problem instance is a four-echelon distribution network with 22 products and a planning horizon of 20 periods. The model is solved by using the min–max and augmented ε-constraint methods with CPLEX as the solver. In addition to illustrating model’s applicability, the effect of choosing a new warehouse in the model is investigated through a scenario analysis.

Findings

For the applicability of the model, the results indicate that the augmented ε-constraint approach provides a set of Pareto solutions, which represents the ideal trade-off between the total logistics cost and gas emission. Through a case study problem instance, the augmented ε-constraint approach is recommended for similar network design problems. From a scenario analysis, when the operational cost of the new warehouse is within a specific fraction of the warehousing cost of third-party warehouses, the solution with the new warehouse outperforms that without the new warehouse with respective to financial and environmental objectives.

Originality/value

The proposed model is an effective decision support tool for management, who would like to assess the impact of network planning decisions on the performance of their supply chains with respect to both financial and environmental aspects under uncertainty.

Article
Publication date: 6 November 2023

Javad Behnamian and Z. Kiani

This paper aims to focus on a medical goods distribution problem and pharmacological waste collection by plug-in hybrid vehicles with some real-world restrictions. In this…

Abstract

Purpose

This paper aims to focus on a medical goods distribution problem and pharmacological waste collection by plug-in hybrid vehicles with some real-world restrictions. In this research, considering alternative energy sources and simultaneous pickup and delivery led to a decrease in greenhouse gas emissions and distribution costs, respectively.

Design/methodology/approach

Here, this problem has been modeled as mixed-integer linear programming with the traveling and energy consumption costs objective function. The GAMS was used for model-solving in small-size instances. Because the problem in this research is an NP-hard problem and solving real-size problems in a reasonable time is impossible, in this study, the artificial bee colony algorithm is used.

Findings

Then, the algorithm results are compared with a simulated annealing algorithm that recently was proposed in the literature. Finally, the results obtained from the exact solution and metaheuristic algorithms are compared, analyzed and reported. The results showed that the artificial bee colony algorithm has a good performance.

Originality/value

In this paper, medical goods distribution with pharmacological waste collection is studied. The paper was focused on plug-in hybrid vehicles with simultaneous pickup and delivery. The problem was modeled with environmental criteria. The traveling and energy consumption costs are considered as an objective function.

Details

Journal of Modelling in Management, vol. 19 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 15 December 2023

Nicola Castellano, Roberto Del Gobbo and Lorenzo Leto

The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on…

Abstract

Purpose

The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on the use of Big Data in a cluster analysis combined with a data envelopment analysis (DEA) that provides accurate and reliable productivity measures in a large network of retailers.

Design/methodology/approach

The methodology is described using a case study of a leading kitchen furniture producer. More specifically, Big Data is used in a two-step analysis prior to the DEA to automatically cluster a large number of retailers into groups that are homogeneous in terms of structural and environmental factors and assess a within-the-group level of productivity of the retailers.

Findings

The proposed methodology helps reduce the heterogeneity among the units analysed, which is a major concern in DEA applications. The data-driven factorial and clustering technique allows for maximum within-group homogeneity and between-group heterogeneity by reducing subjective bias and dimensionality, which is embedded with the use of Big Data.

Practical implications

The use of Big Data in clustering applied to productivity analysis can provide managers with data-driven information about the structural and socio-economic characteristics of retailers' catchment areas, which is important in establishing potential productivity performance and optimizing resource allocation. The improved productivity indexes enable the setting of targets that are coherent with retailers' potential, which increases motivation and commitment.

Originality/value

This article proposes an innovative technique to enhance the accuracy of productivity measures through the use of Big Data clustering and DEA. To the best of the authors’ knowledge, no attempts have been made to benefit from the use of Big Data in the literature on retail store productivity.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 24 April 2024

Mohsen Jami, Hamidreza Izadbakhsh and Alireza Arshadi Khamseh

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic…

Abstract

Purpose

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic, tactical and operational decisions of three levels of blood collection, processing and distribution leads to satisfying the demand at the right time.

Design/methodology/approach

This paper proposes an integrated BSCN in disaster conditions to consider four categories of facilities, including temporary blood collection centers, field hospitals, main blood processing centers and medical centers, to optimize demand response time appropriately. The proposed model applies the location of all permanent and emergency facilities in three levels: blood collection, processing and distribution. Other essential decisions, including multipurpose facilities, emergency transportation, inventory and allocation, were also used in the model. The LP metric method is applied to solve the proposed bi-objective mathematical model for the BSCN.

Findings

The findings show that this model clarifies its efficiency in the total cost and blood delivery time reduction, which results in a low carbon transmission of the blood supply chain.

Originality/value

The researchers proposed an integrated BSCN in disaster conditions to minimize the cost and time of blood delivery. They considered multipurpose capabilities for facilities (e.g. field hospitals are responsible for the three purposes of blood collection, processing and distribution), and so locating permanent and emergency facilities at three levels of blood collection, processing and distribution, support facilities, emergency transportation and traffic on the route with pollution were used to present a new model.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 13 March 2024

Carla Ramos, Adriana Bruscato Bortoluzzo and Danny P. Claro

This study aims to capture how the association between a multichannel relational communication strategy (MRCS) and customer performance is contingent upon such customer…

Abstract

Purpose

This study aims to capture how the association between a multichannel relational communication strategy (MRCS) and customer performance is contingent upon such customer performance (low- versus high-performance customers) and to reconcile past contradictory results in this marketing-related topic. To this end, the authors propose and validate the method of quantile regression as an unconventional, yet effective, means to proceed to that reconciliation.

Design/methodology/approach

This study collected data from 4,934 customers of a private pension fund firm and accounted for both firm- and customer-initiated relational communication channels (RCCs) and for customer lifetime value (CLV). This study estimated a generalized linear model and then a quantile regression model was used to account for customer performance heterogeneity.

Findings

This study finds that specific RCCs present different levels of association with performance for low- versus high-performance customers, where outcome customer performance is the dependent variable. For example, the relation between firm-initiated communication (FIC) and performance is stronger for low-CLV customers, whereas the relation between customer-initiated communication (CIC) and performance is increasingly stronger for high-CLV customers but not for low-CLV ones. This study also finds that combining different forms of FIC can result in a negative association with customer performance, especially for low-CLV customers.

Research limitations/implications

The authors tested the conceptual model in one single firm in the specific context of financial services and with cross-sectional data, so there should be caution when extrapolating this study’s findings.

Practical implications

This study offers nuanced and precise managerial insights on recommended resource allocation along with relational communication efforts, showing how managers can benefit from adopting a differentiated-customer performance approach when designing their MRCS.

Originality/value

This study provides an overview of the state of the art of MRCS, proposes a contingency analysis of the relationship between MRCS and performance based on customer performance heterogeneity and suggests the quantile method to perform such analysis and help reconcile past contradictory findings. This study shows how the association between RCCs and CLV varies across the conditional quantiles of the distribution of customer performance. This study also addresses a recent call for a more holistic perspective on the relationships between independent and dependent variables.

Article
Publication date: 12 January 2024

Mathew B. Fukuzawa, Brandon M. McConnell, Michael G. Kay, Kristin A. Thoney-Barletta and Donald P. Warsing

Demonstrate proof-of-concept for conducting NFL Draft trades on a blockchain network using smart contracts.

Abstract

Purpose

Demonstrate proof-of-concept for conducting NFL Draft trades on a blockchain network using smart contracts.

Design/methodology/approach

Using Ethereum smart contracts, the authors model several types of draft trades between teams. An example scenario is used to demonstrate contract interaction and draft results.

Findings

The authors show the feasibility of conducting draft-day trades using smart contracts. The entire negotiation process, including side deals, can be conducted digitally.

Research limitations/implications

Further work is required to incorporate the full-scale depth required to integrate the draft trading process into a decentralized user platform and experience.

Practical implications

Cutting time for the trade negotiation process buys decision time for team decision-makers. Gains are also made with accuracy and cost.

Social implications

Full-scale adoption may find resistance due to the level of fan involvement; the draft has evolved into an interactive experience for both fans and teams.

Originality/value

This research demonstrates the new application of smart contracts in the inter-section of sports management and blockchain technology.

Details

International Journal of Sports Marketing and Sponsorship, vol. 25 no. 2
Type: Research Article
ISSN: 1464-6668

Keywords

Book part
Publication date: 6 May 2024

Ezzeddine Delhoumi and Faten Moussa

The purpose of this chapter is to cover banking efficiency using the concept of the Meta frontier function and to study group and subgroup differences in the production…

Abstract

The purpose of this chapter is to cover banking efficiency using the concept of the Meta frontier function and to study group and subgroup differences in the production technology. This study estimates the technical efficiency (TE) and technology gap ratios (TGRs) for banks in Islamic countries. Using the assumption of the convex hull of the Meta frontier production set using the virtual Meta frontier within the nonparametric approach as presented by Battese and Rao (2002), Battese et al. (2004), and O'Donnell et al. (2007, 2008) and after relaxing this assumption, the study investigates if there is a significant difference between these two methods. To overcome the deterministic criterion addressed to nonparametric approach, the bootstrapping technique has been applied. The first part of this chapter covers the analytical framework necessary for the definition of a Meta frontier function and its estimation using nonparametric data envelopment analysis (DEA) in the case where we impose the assumption of the convex production set and follows in the case of relaxation of this assumption. Then we estimated the TE and the TGR in concave and nonconcave Meta frontier cases by applying the Bootstrap-DEA approach. The empirical part will be reserved for highlighting these methods on data bank to study the technical and technological performance level and prove if there is a difference between the two methods. Three groups of banks namely commercial, investment, and Islamic banks in 17 Islamic countries over a period of 16 years between 1996 and 2011 are used.

Details

The Emerald Handbook of Ethical Finance and Corporate Social Responsibility
Type: Book
ISBN: 978-1-80455-406-7

Keywords

Article
Publication date: 30 November 2023

Elif Kiran, Yesim Deniz Ozkan-Ozen and Yucel Ozturkoglu

This study aims to analyze lean wastes for the poultry sector in Turkey and link lean tools to this study, focusing on identifying each lean waste that affects poultry production…

Abstract

Purpose

This study aims to analyze lean wastes for the poultry sector in Turkey and link lean tools to this study, focusing on identifying each lean waste that affects poultry production and proposing solutions for preventing these lean wastes in the sector. The proposed solutions aim to improve processes by suggesting different lean tools and their applications for the poultry sector.

Design/methodology/approach

The study consists of two different applications. First, the waste relationship matrix (WRM) was created to reveal the relationship between seven lean wastes and their importance order. Then, after determining lean tools for eliminating lean wastes, the optimum weight ranking and consistency ratio of the most suitable lean tools were calculated for these wastes and ranked with the best-worst method (BWM).

Findings

Results showed that overproduction is the most critical waste that impacts other wastes, followed by defect waste. Due to the nature of the sector, these wastes not only result in economic loss for the company but also in food waste and loss and issues related to animal welfare. Furthermore, the Kaizen approach and 5S implementation are the methods to eliminate these wastes. Detailed discussion on the link between lean tools and lean wastes is provided for the poultry sector.

Originality/value

This is the first study that theoretically and empirically identifies the potential lean waste affecting the poultry sector and provides lean tools for eliminating these wastes. Sector-specific explanations and discussions are presented in the study to show the applicability of lean approaches in the poultry sector to eliminate waste. In addition, this study is the first to integrate the WRM and BWM.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 April 2024

Fatemeh Ravandi, Azar Fathi Heli Abadi, Ali Heidari, Mohammad Khalilzadeh and Dragan Pamucar

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of…

Abstract

Purpose

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of ambulances pose operational and momentary challenges, necessitating an optimal policy based on the system's real-time status. While previous studies have addressed these concerns, limited attention has been given to the optimal allocation of technicians to respond to emergency situation and minimize overall system costs.

Design/methodology/approach

In this paper, a bi-objective mathematical model is proposed to maximize system coverage and enable flexible movement across bases for location, dispatch and relocation of ambulances. Ambulances relocation involves two key decisions: (1) allocating ambulances to bases after completing services and (2) deciding to change the current ambulance location among existing bases to potentially improve response times to future emergencies. The model also considers the varying capabilities of technicians for proper allocation in emergency situations.

Findings

The Augmented Epsilon-Constrained (AEC) method is employed to solve the proposed model for small-sized problem. Due to the NP-Hardness of the model, the NSGA-II and MOPSO metaheuristic algorithms are utilized to obtain efficient solutions for large-sized problems. The findings demonstrate the superiority of the MOPSO algorithm.

Practical implications

This study can be useful for emergency medical centers and healthcare companies in providing more effective responses to emergency situations by sending technicians and ambulances.

Originality/value

In this study, a two-objective mathematical model is developed for ambulance location and dispatch and solved by using the AEC method as well as the NSGA-II and MOPSO metaheuristic algorithms. The mathematical model encompasses three primary types of decision-making: (1) Allocating ambulances to bases after completing their service, (2) deciding to relocate the current ambulance among existing bases to potentially enhance response times to future emergencies and (3) considering the diverse abilities of technicians for accurate allocation to emergency situations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 274