Search results

1 – 10 of over 2000
Article
Publication date: 9 September 2022

Akhilesh Kumar, Gaurav Kumar, Tanaya Vijay Ramane and Gurjot Singh

This study proposes strategies for vaccine center allocation for coronavirus disease (COVID) vaccine by determining the number of vaccination stations required for the vaccination…

Abstract

Purpose

This study proposes strategies for vaccine center allocation for coronavirus disease (COVID) vaccine by determining the number of vaccination stations required for the vaccination drive, location of vaccination station, assignment of demand group to vaccination station, allocation of the scarce medical professional teams to station and number of optimal days a vaccination station to be functional in a week.

Design/methodology/approach

The authors propose a mixed-integer nonlinear programming model. However, to handle nonlinearity, the authors devise a heuristic and then propose a two-stage mixed-integer linear programming (MILP) formulation to optimize the allocation of vaccination centers or stations to demand groups in the first stage and the allocation of vaccination centers to cold storage links in the second stage. The first stage optimizes the cost and average distance traveled by people to reach the vaccination center, whereas the second stage optimizes the vaccine’s holding and storage and transportation cost by efficiently allocating cold storage links to the centers.

Findings

The model is studied for the real-world case of Chandigarh, India. The results obtained validate that the proposed approach can immensely help government agencies and policymaking body for a successful vaccination drive. The model tries to find a tradeoff between loss due to underutilized medical teams and the distance traveled by a demand group to get the vaccination.

Originality/value

To the best of our knowledge, there are hardly any studies on a vaccination program at such a scale due to sudden outbreaks such as Covid-19.

Details

Benchmarking: An International Journal, vol. 30 no. 9
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 19 December 2022

Amir Yaqoubi, Fatemeh Sabouhi, Ali Bozorgi-Amiri and Mohsen Sadegh Amalnick

A growing body of evidence points to the influence of location and allocation decisions on the structure of healthcare networks. The authors introduced a three-level hierarchical…

Abstract

Purpose

A growing body of evidence points to the influence of location and allocation decisions on the structure of healthcare networks. The authors introduced a three-level hierarchical facility location model to minimize travel time in the healthcare system under uncertainty.

Design/methodology/approach

Most healthcare networks are hierarchical and, as a result, the linkage between their levels makes it difficult to specify the location of the facilities. In this article, the authors present a hybrid approach according to data envelopment analysis and robust programming to design a healthcare network. In the first phase, the efficiency of each potential location is calculated based on the non-radial range-adjusted measure considering desirable and undesirable outputs based on a number of criteria such as the target area's population, proximity to earthquake faults, quality of urban life, urban decrepitude, etc. The locations deemed suitable are then used as candidate locations in the mathematical model. In the second phase, based on the proposed robust optimization model, called light robustness, the location and allocation decisions are adopted.

Findings

The developed model is evaluated using an actual-world case study in District 1 of Tehran, Iran and relevant results and different sensitivity analyses were presented as well. When the percentage of referral parameters changes, the value of the robust model's objective function increases.

Originality/value

The contributions of this article are listed as follows: Considering desirable and undesirable criteria to selecting candidate locations, providing a robust programming model for building a service network and applying the developed model to an actual-world case study.

Article
Publication date: 28 December 2023

Cláudia Rafaela Saraiva de Melo Simões Nascimento, Adiel Teixeira de Almeida-Filho and Rachel Perez Palha

This paper proposes selecting a construction project portfolio in the context of a public institution, which makes it possible to assess quantitative and qualitative criteria…

Abstract

Purpose

This paper proposes selecting a construction project portfolio in the context of a public institution, which makes it possible to assess quantitative and qualitative criteria, thereby meeting the needs of the institution and the existing constraints.

Design/methodology/approach

The research design follows a framework using technique for order preference by similarity to ideal solution (TOPSIS) associated with integer linear programming.

Findings

The method involves a flow of assessments allowing criteria and weights to be elicited where outcomes are based on the experts' intra-criteria assessment of alternatives and decision-makers' inter-criteria assessment. This is of utmost interest to public organizations, where selections must result in benefits and lower costs, integrating the experts' technical and management perspectives.

Social implications

Public institutions are characterized by having limited financial and personnel resources for project development despite having a high demand for requests not associated with profits, making it essential to have a framework that enables using multiple criteria to better evaluate the benefits related to these decisions.

Originality/value

The main contributions of this article are: (1) the proposition of a framework for selecting construction project portfolios considering the organization's strategic needs; (2) identifying quantitative and qualitative assessment criteria for project selection; (3) integrating TOPSIS with an optimization process for selecting the construction project portfolios and (4) providing a structured decision process for selecting the portfolio that best represents the interests of the institution within its limited resources and personnel.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Abstract

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Abstract

Details

Organization and Governance Using Algorithms
Type: Book
ISBN: 978-1-83797-060-5

Article
Publication date: 27 September 2023

Behzad Paryzad and Kourosh Eshghi

This paper aims to conduct a fuzzy discrete time cost quality risk in the ambiguous mode CO2 tradeoff problem (FDTCQRP*TP) in a megaproject based on fuzzy ground.

Abstract

Purpose

This paper aims to conduct a fuzzy discrete time cost quality risk in the ambiguous mode CO2 tradeoff problem (FDTCQRP*TP) in a megaproject based on fuzzy ground.

Design/methodology/approach

A combinatorial evolutionary algorithm using Fuzzy Invasive Weed Optimization (FIWO) is used in the discrete form of the problem where the parameters are fully fuzzy multi-objective and provide a space incorporating all dimensions of the problem. Also, the fuzzy data and computations are used with the Chanas method selected for the computational analysis. Moreover, uncertainty is defined in FIWO. The presented FIWO simulation, its utility and superiority are tested on sample problems.

Findings

The reproduction, rearrangement and maintaining elite invasive weeds in FIWO can lead to a higher level of accuracy, convergence and strength for solving FDTCQRP*TP fuzzy rules and a risk ground in the ambiguous mode with the emphasis on the necessity of CO2 pollution reduction. The results reveal the effectiveness of the algorithm and its flexibility in the megaproject managers' decision making, convergence and accuracy regarding CO2 pollution reduction.

Originality/value

This paper offers a multi-objective fully fuzzy tradeoff in the ambiguous mode with the approach of CO2 pollution reduction.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 February 2023

Gokhan Agac, Birdogan Baki and Ilker Murat Ar

The purpose of this study is to systematically review the existing literature on the blood supply chain (BSC) from a network design perspective and highlight the research gaps in…

Abstract

Purpose

The purpose of this study is to systematically review the existing literature on the blood supply chain (BSC) from a network design perspective and highlight the research gaps in this area. Moreover, it also aims to pinpoint new research opportunities based on the recent innovative technologies for the BSC network design.

Design/methodology/approach

The study gives a comprehensive systematic review of the BSC network design studies until October 2021. This review was carried out in accordance with preferred reporting items for systematic reviews and meta-analyses (PRISMA). In the literature review, a total of 87 studies were analyzed under six main categories as model structure, application model, solution approach, problem type, the parties of the supply chain and innovative technologies.

Findings

The results of the study present the researchers’ tendencies and preferences when designing their BSC network models.

Research limitations/implications

The study presents a guide for researchers and practitioners on BSC from the point of view of network design and encourages adopting innovative technologies in their BSC network designs.

Originality/value

The study provides a comprehensive systematic review of related studies from the BSC network design perspective and explores research gaps in the collection and distribution processes. Furthermore, it addresses innovative research opportunities by using innovative technologies in the area of BSC network design.

Details

Journal of Modelling in Management, vol. 19 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 26 December 2023

Mukul Anand, Debashis Chatterjee and Swapan Kumar Goswami

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency…

Abstract

Purpose

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency systems. This study also emphasizes a reduction in calculations based on mathematical approaches.

Design/methodology/approach

Telegrapher’s method has been used to reduce large calculations in low-frequency high-voltage alternating current (LF-HVac) lines. The static compensator (STATCOM) has been used to maintain voltage stability. For optimal frequency selection, a modified Jaya algorithm (MJAYA) for optimal load flow analysis was implemented.

Findings

The MJAYA algorithm performed better than other conventional algorithms and determined the optimum frequency selection while minimizing losses. Voltage stability was also achieved with the proposed optimal load flow (OLF), and statistical analysis showed that the proposed OLF reduces the frequency deviation and standard error of the LF-HVac lines.

Originality/value

The optimal frequency for LF-HVac lines has been achieved, Telegrapher’s method has been used in OLF, and STATCOM has been used in LF-HVac transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 February 2023

Varun Mahajan, Sandeep Kumar Mogha and R.K.Pavan Kumar Pannala

The main purpose of this paper is to determine the bias-corrected efficiencies and rankings of the selected hotels and restaurants (H&Rs) in India.

Abstract

Purpose

The main purpose of this paper is to determine the bias-corrected efficiencies and rankings of the selected hotels and restaurants (H&Rs) in India.

Design/methodology/approach

The data for the Indian H&R sector are collected from the Prowess database. The bootstrap data envelopment analysis (DEA) based on a constant return to scale (CRS), variable return to scale-input oriented (VRS-IP) and variable return to scale-output oriented (VRS-OP) are applied on H&Rs to obtain the bias-corrected efficiencies.

Findings

It is found that relative efficiencies using basic DEA methods of all the 45 H&Rs of India are overestimated. These efficiencies are corrected using bias correction through bootstrap DEA methods. The bounds for the efficiencies of each H&R are computed using all the adopted methods. All H&Rs are ranked using bias-corrected efficiencies, and the linear trend between ranks suggests that the H&Rs are ranked almost similarly by all the adopted methods.

Practical implications

To improve efficiency, Indian H&R companies must rethink their personnel needs by enhancing their workforce management capabilities. The government needs to extend more support to this sector by introducing a liberal legislation framework and supporting infrastructure policies.

Originality/value

There is a paucity of studies on H&Rs in India. The current study focused on measuring bias-corrected efficiencies of the selected H&Rs of India. This study is one of the few initiatives to explore bias-corrected efficiencies extensively using the bootstrap DEA method.

Details

Benchmarking: An International Journal, vol. 31 no. 1
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 13 October 2023

Mengdi Zhang, Aoxiang Chen, Zhiheng Zhao and George Q. Huang

This research explores mitigating carbon emissions and integrating sustainability in e-commerce logistics by optimizing the multi-depot pollution routing problem with time windows…

Abstract

Purpose

This research explores mitigating carbon emissions and integrating sustainability in e-commerce logistics by optimizing the multi-depot pollution routing problem with time windows (MDPRPTW). A proposed model contrasts non-collaborative and collaborative decision-making for order assignment among logistics service providers (LSPs), incorporating low-carbon considerations.

Design/methodology/approach

The model is substantiated using improved adaptive large neighborhood search (IALNS), tabu search (TS) and oriented ant colony algorithm (OACA) within the context of e-commerce logistics. For model validation, a normal distribution is employed to generate random demand and inputs, derived from the location and requirements files of LSPs.

Findings

This research validates the efficacy of e-commerce logistics optimization and IALNS, TS and OACA algorithms, especially when demand follows a normal distribution. It establishes that cooperation among LSPs can substantially reduce carbon emissions and costs, emphasizing the importance of integrating sustainability in e-commerce logistics optimization.

Research limitations/implications

This paper proposes a meta-heuristic algorithm to solve the NP-hard problem. Methodologies such as reinforcement learning can be investigated in future work.

Practical implications

This research can help logistics managers understand the status of sustainable and cost-effective logistics operations and provide a basis for optimal decision-making.

Originality/value

This paper describes the complexity of the MDPRPTW model, which addresses both carbon emissions and cost reduction. Detailed information about the algorithm, methodology and computational studies is investigated. The research problem encompasses various practical aspects related to routing optimization in e-commerce logistics, aiming for sustainable development.

Details

Industrial Management & Data Systems, vol. 124 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 2000