Search results

1 – 10 of over 8000
Article
Publication date: 5 December 2022

Kuharaaj Govindan and Niko Bier

This study aims to predict dynamic responses of aileron and spoiler control surfaces in subsonic flight via the use of surrogate models. The prepared reduced order models prove…

Abstract

Purpose

This study aims to predict dynamic responses of aileron and spoiler control surfaces in subsonic flight via the use of surrogate models. The prepared reduced order models prove useful when quick estimations for a large number of variations are required.

Design/methodology/approach

The linear frequency domain (LFD) method was used for the simulation study. Each surrogate contained a database of 100 control surface dynamic responses over a spectrum of 200 harmonics computed with LFD. To interpolate new results, the DLR surrogate modelling toolbox, SMARTy, was used. The database’s samples were prepared in a Halton sequence, making interpolation reliable. The surrogate’s parameter space was the Mach number, Reynold’s number, angle of attack, control surface deflection angle and the control surface chord length.

Findings

The LFD method proved effective for the mentioned purpose: the surrogates were accurate, up to 15% of relative error, in reproducing dynamic responses of aileron and spoiler deflections at low speed, within the limitations of flow field linearity, as well as surrogate prediction capability. The restrictions of the surrogate, and the reasoning thereof, are also presented in detail in the study. Future load alleviation studies are a potential of the findings here.

Originality/value

LFD is an innovative technique for load prediction and alleviation studies. This paper provides a reference for engineers wishing to use the method for the two mentioned control surfaces, or the like.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 August 2010

M. Kharati Koopaee, M.M. Alishahi and H. Emdad

The purpose of this paper is to discuss the capability of nonlinear frequency domain (NLFD) method in predicting surface pressure coefficient presented in the time domain in…

Abstract

Purpose

The purpose of this paper is to discuss the capability of nonlinear frequency domain (NLFD) method in predicting surface pressure coefficient presented in the time domain in unsteady transonic flows.

Design/methodology/approach

In this research, the solution and spatial operator are approximated by discrete form of Fourier transformation and resulting nonlinear equations are solved by use of pseudo‐spectral approach. Considered transonic flows involve different flow pattern on the airfoil surfaces. One of the test cases involves moving shocks on both lower and upper airfoil surfaces and in the two other test cases a moving shock occurs only on the upper surface.

Findings

Pressure distributions presented in the time domain using NLFD are compared with three test cases. Results show that NLFD predicts reasonable pressure distributions in time domain except in vicinity of shock positions. Although this method may predict unfair results near shock positions, however gives good estimates for global properties such as lift coefficient.

Originality/value

In the previous works on NLFD method, the flow field results have been limited to representing the pressure in the frequency domain or global coefficients such as lift coefficients. No details of pressure distributions in the time domain have been provided in such investigations. In this research, by presenting the pressure in the time domain, the conditions on which good pressure distributions are obtained are demonstrated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1128

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2018

Yan Zhao, L.T. Si and H. Ouyang

A novel frequency domain approach, which combines the pseudo excitation method modified by the authors and multi-domain Fourier transform (PEM-FT), is proposed for analyzing…

Abstract

Purpose

A novel frequency domain approach, which combines the pseudo excitation method modified by the authors and multi-domain Fourier transform (PEM-FT), is proposed for analyzing nonstationary random vibration in this paper.

Design/methodology/approach

For a structure subjected to a nonstationary random excitation, the closed-form solution of evolutionary power spectral density of the response is derived in frequency domain.

Findings

The deterministic process and random process in an evolutionary spectrum are separated effectively using this method during the analysis of nonstationary random vibration of a linear damped system, only modulation function of the system needs to be estimated, which brings about a large saving in computational time.

Originality/value

The method is general and highly flexible as it can deal with various damping types and nonstationary random excitations with different modulation functions.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1984

E. Bayo and E.L. Wilson

A general time domain finite element formulation and several efficient numerical techniques are combined to form a new method of analysis for the solution of three‐dimensional…

Abstract

A general time domain finite element formulation and several efficient numerical techniques are combined to form a new method of analysis for the solution of three‐dimensional soil‐structure interaction problems in the time domain. For elastic systems the method is a very cost effective alternative to the frequency domain approach. However, the major advantage of the new method is its ability to be extended to non‐linear behaviour such as separation of foundation and soil or non‐linear material. The general equations of motion for the linear cases are expressed in terms of the relative displacements of the soil‐structure system with respect to the displacements of the buried part of the structure (volume methods). This formulation allows the load vector to be an exclusive function of the free field accelerations at the foundation level. The non‐linear case requires that the equation of motion be established in terms of the total interaction displacements. The soil is modelled with three‐dimensional solid elements in the near field and axisymmetric elements in the far field. Coupling between the two systems is enforced by expanding the displacements of the solid elements in terms of the axisymmetric ones. Reduction in the number of degrees of freedom is achieved by the use of orthogonal sets of Ritz functions. The reduced system of equations is uncoupled and solved very efficiently using the complex eigenvectors. A numerical example consisting of the response of a structure resting on a homogeneous half‐space is solved using the new method and one of the approaches in the frequency domain. Results given by both methods are remarkably similar.

Details

Engineering Computations, vol. 1 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 2 November 2015

Yanchuang Cao, Junjie Rong, Lihua Wen and Jinyou Xiao

The purpose of this paper is to develop an easy-to-implement and accurate fast boundary element method (BEM) for solving large-scale elastodynamic problems in frequency and time…

215

Abstract

Purpose

The purpose of this paper is to develop an easy-to-implement and accurate fast boundary element method (BEM) for solving large-scale elastodynamic problems in frequency and time domains.

Design/methodology/approach

A newly developed kernel-independent fast multipole method (KIFMM) is applied to accelerating the evaluation of displacements, strains and stresses in frequency domain elastodynamic BEM analysis, in which the far-field interactions are evaluated efficiently utilizing equivalent densities and check potentials. Although there are six boundary integrals with unique kernel functions, by using the elastic theory, the authors managed to accelerate these six boundary integrals by KIFMM with the same kind of equivalent densities and check potentials. The boundary integral equations are discretized by Nyström method with curved quadratic elements. The method is further used to conduct the time-domain analysis by using the frequency-domain approach.

Findings

Numerical results show that by the fast BEM, high accuracy can be achieved and the computational complexity is brought down to linear. The performance of the present method is further demonstrated by large-scale simulations with more than two millions of unknowns in the frequency domain and one million of unknowns in the time domain. Besides, the method is applied to the topological derivatives for solving elastodynamic inverse problems.

Originality/value

An efficient KIFMM is implemented in the acceleration of the elastodynamic BEM. Combining with the Nyström discretization based on quadratic elements and the frequency-domain approach, an accurate and highly efficient fast BEM is achieved for large-scale elastodynamic frequency domain analysis and time-domain analysis.

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 July 2009

S. Rainer O. Bíró and A. Stermecki

Different solution methods, using finite element method in continuous and discrete frequency domain, are compared with each other in order to find the most appropriate method for…

Abstract

Purpose

Different solution methods, using finite element method in continuous and discrete frequency domain, are compared with each other in order to find the most appropriate method for the estimation of steady state vibrations in linear structural and mechanical problems. The purpose of this paper is to describe the procedures.

Design/methodology/approach

The continuous and some relevant discrete frequency domain solution methods are compared by an analytical investigation as well as by the numerical examination of a simple model. Finally, results for a more relevant example using finite elements are presented.

Findings

It is shown that the steady state computation using the continuous frequency domain system description delivers the exact solution for a given system.

Originality/value

Based on the presented results, the use of continuous frequency domain system description is recommendable in most cases.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Luis Godinho and Fernando Branco

A number of works have been published in the scientific literature proposing the solution of heat diffusion problems by first transforming the relevant partial differential…

Abstract

Purpose

A number of works have been published in the scientific literature proposing the solution of heat diffusion problems by first transforming the relevant partial differential equation to the frequency domain. The purpose of this paper is to present a mesh-free strategy to assess transient heat propagation in the frequency domain, also allowing incorporating initial non-zero conditions.

Design/methodology/approach

The strategy followed here is based in Kansa's method, using the MQ RBF as a basis function. The resulting method is truly mesh-free, and does not require any domain or boundary integrals to be evaluated. The definition of good values for the free parameter of the MQ RBF is also addressed.

Findings

The strategy was found to be accurate in the calculation of both frequency and time-domain responses. The time evolution of the temperature considering an initial non-uniform distribution of temperatures compared well with a standard time-marching algorithm, based on an implicit Crank-Nicholson implementation. It was possible to calculate frequency-dependent values for the free parameter of the radial basis function.

Originality/value

As far as the authors are aware, previous implementations of the frequency domain heat transfer approach required domain integrals to be evaluated in order to implement non-zero initial conditions. This is totally avoided with the present formulation. Additionally, the method is truly mesh-free, accurate and does not require any element or background mesh to be defined.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2019

Xiaoyu Hu, Evan Chodora, Saurabh Prabhu, Akshay Gupte and Sez Atamturktur

This paper aims to present an approach for calibrating the numerical models of dynamical systems that have spatially localized nonlinear components. The approach implements the…

Abstract

Purpose

This paper aims to present an approach for calibrating the numerical models of dynamical systems that have spatially localized nonlinear components. The approach implements the extended constitutive relation error (ECRE) method using multi-harmonic coefficients and is conceived to separate the errors in the representation of the global, linear and local, nonlinear components of the dynamical system through a two-step process.

Design/methodology/approach

The first step focuses on the system’s predominantly linear dynamic response under a low magnitude periodic excitation. In this step, the discrepancy between measured and predicted multi-harmonic coefficients is calculated in terms of residual energy. This residual energy is in turn used to spatially locate errors in the model, through which one can identify the erroneous model inputs which govern the linear behavior that need to be calibrated. The second step involves measuring the system’s nonlinear dynamic response under a high magnitude periodic excitation. In this step, the response measurements under both low and high magnitude excitation are used to iteratively calibrate the identified linear and nonlinear input parameters.

Findings

When model error is present in both linear and nonlinear components, the proposed iterative combined multi-harmonic balance method (MHB)-ECRE calibration approach has shown superiority to the conventional MHB-ECRE method, while providing more reliable calibration results of the nonlinear parameter with less dependency on a priori knowledge of the associated linear system.

Originality/value

This two-step process is advantageous as it reduces the confounding effects of the uncertain model parameters associated with the linear and locally nonlinear components of the system.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 8000