Search results

1 – 10 of 87
Open Access
Article
Publication date: 19 March 2024

Feng Chen, Zhongjin Wang, Dong Zhang and Shuai Zeng

Explore the development trend of chemically-improved soil in railway engineering.

Abstract

Purpose

Explore the development trend of chemically-improved soil in railway engineering.

Design/methodology/approach

In this paper, the technical standards home and abroad were analyzed. Laboratory test, field test and monitoring were carried out.

Findings

The performance design system of the chemically-improved soil should be established.

Originality/value

On the basis of the performance design, the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 15 September 2023

Liming Zhu, Zhengmao Qiu, Sheng Chen, Xiaojing Wang, Lingfeng Huang and Feiyu Chen

The purpose of this paper is to propose a type of hybrid bearing lubricated with supercritical carbon dioxide (S-CO2) and to investigate the stiffness and damping characteristics…

Abstract

Purpose

The purpose of this paper is to propose a type of hybrid bearing lubricated with supercritical carbon dioxide (S-CO2) and to investigate the stiffness and damping characteristics of the bearing under hydrostatic status.

Design/methodology/approach

Established a test rig for radial bearings lubricated with S-CO2 and used it to measure the dynamic coefficients by recording the relative and absolute displacements of bearing. Test bearing is mounted on a nonrotating, stiff shaft. Using static loading experiments to obtain structural stiffness. The dynamic coefficient regularities of the test bearing under hydrostatic status were revealed through dynamic loading experiments.

Findings

Experiment results indicate that test bearing displayed increased stiffness when subjected to high excitation frequencies and low excitation forces, as well as elevated damping when exposed to low excitation frequencies and low excitation forces. Additionally, an increase in either environmental pressure or hydrostatic recess pressure can elevate the dynamic coefficient. The effect of temperature on the dynamic coefficient is more pronounced around the critical temperature of S-CO2.

Originality/value

Designed a type of hybrid bearing for use in the Brayton cycle that is lubricated with S-CO2 and uses hydrostatic lubrication during start-stop and hydrodynamic lubrication during high-speed operation. The hybrid bearing reduces the wear and friction power consumption of gas bearing. However, few experimental analyses have been conducted by researchers in this field.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 February 2024

Manager Rajdeo Singh, Aditya Prakash Kanth, Madhuri Sawant and Rajesh Ragde

The present work highlights the outstanding properties of Cannabis sativa that can be harnessed for various utilitarian functions and its climate friendly properties.

Abstract

Purpose

The present work highlights the outstanding properties of Cannabis sativa that can be harnessed for various utilitarian functions and its climate friendly properties.

Design/methodology/approach

In this paper, the authors reviewed current research on all possible utilities from household work to manufacturing of various products that are environmentally sustainable. The authors have presented some of their research on this materials and also exploration of hemp as an archaeological material based on the findings from wall paintings of Ellora caves.

Findings

There are references of hemp use in mixing with earthen/lime plaster of western Indian monuments. Around 1,500 years of Ellora’s earthen plaster, despite harsh climatic conditions, survived due to the presence of hemp in the plaster that adds durability, fibrosity and its capacity to ward off insects and control humidity. Furthermore, the outstanding quality of Cannabis as carbon sequestrant was harnessed by Indians of ancient times in Ellora mural paintings.

Research limitations/implications

This work discusses some relevant literature on the potential use of hempcrete aligned with Agenda 2030 of sustainable development goals.

Practical implications

There are several research going on in producing sustainable materials using hemp that have the least environmental impact and can provide eco-friendly solutions.

Social implications

The authors impress upon the readers about multifarious utility of the hemp and advices for exploration of this material to address many environmental issues.

Originality/value

This paper presents both review of the existing papers and some components coming directly from their laboratory investigations.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Article
Publication date: 1 January 2024

Shi Chen, Zhiyong Han, Qiang Zeng, Bing Wang, Liming Wang, Liuyang Guo and Yimin Shao

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance…

83

Abstract

Purpose

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance between friction pairs. This paper aims to propose a novel two-parameter evaluation method for HVD during the mixed lubrication stage. The objective is to develop an effective model that establishes the relationship between these parameters and the actual surface topography.

Design/methodology/approach

In the presented methods, the fractal features of the real manufacturing surface are calculated based on the power spectrum function by the ultra-depth three-dimensional microscope. After that, the hybrid friction model of the friction plate is established based on mixed elasto-hydrodynamic lubrication theory, boundary friction model and fractal theory. Then the torque and load bearing characteristics of the clutch are obtained, and the influences of the surface fractal features are investigated and discussed. Finally, the Weierstrass–Mandelbrot function is adopted for the surface topography characterization and evaluation.

Findings

The results indicate that the proposed method exhibits good accuracy, while the speed difference between the friction pair exceeds 2,500 rpm. It is concluded that this paper proposed a way to evaluate the torque and loading capacity of HVD considering the real manufacturing surface topography and is helpful for surface optimization.

Originality/value

The originality and value of this study lie in its development of a novel torque and load bearing capacity evaluation method for HVD in mixed lubrication stage, considering manufacturing surface topography and describing the real manufacturing surface.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 28 February 2023

Manuel Jesus, Ana Sofia Guimarães, Bárbara Rangel and Jorge Lino Alves

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive…

1590

Abstract

Purpose

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive handcrafted techniques and scarce materials.

Design/methodology/approach

A compilation of different information on frequent anomalies in cultural heritage buildings and commonly used materials is conducted; subsequently, some innovative techniques used in the construction sector (3DP and 3D scanning) are addressed, as well as some case studies related to the rehabilitation of cultural heritage building elements, leading to a reflection on the opportunities and challenges of this application within these types of buildings.

Findings

The compilation of information summarised in the paper provided a clear reflection on the great potential of 3DP for cultural heritage rehabilitation, requiring the development of new mixtures (lime mortars, for example) compatible with the existing surface and, eventually, incorporating some residues that may improve interesting properties; the design of different extruders, compatible with the new mixtures developed and the articulation of 3D printers with the available mapping tools (photogrammetry and laser scanning) to reproduce the component as accurately as possible.

Originality/value

This paper sets the path for a new application of 3DP in construction, namely in the field of cultural heritage rehabilitation, by identifying some key opportunities, challenges and for designing the process flow associated with the different technologies involved.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 8 September 2022

Johnny Kwok Wai Wong, Mojtaba Maghrebi, Alireza Ahmadian Fard Fini, Mohammad Amin Alizadeh Golestani, Mahdi Ahmadnia and Michael Er

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes…

Abstract

Purpose

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes. The state-of-the-art low-light image enhancement method provides promising image enhancement results. However, they generally require a longer execution time to complete the enhancement. This study aims to develop a refined image enhancement approach to improve execution efficiency and performance accuracy.

Design/methodology/approach

To develop the refined illumination enhancement algorithm named enhanced illumination quality (EIQ), a quadratic expression was first added to the initial illumination map. Subsequently, an adjusted weight matrix was added to improve the smoothness of the illumination map. A coordinated descent optimization algorithm was then applied to minimize the processing time. Gamma correction was also applied to further enhance the illumination map. Finally, a frame comparing and averaging method was used to identify interior site progress.

Findings

The proposed refined approach took around 4.36–4.52 s to achieve the expected results while outperforming the current low-light image enhancement method. EIQ demonstrated a lower lightness-order error and provided higher object resolution in enhanced images. EIQ also has a higher structural similarity index and peak-signal-to-noise ratio, which indicated better image reconstruction performance.

Originality/value

The proposed approach provides an alternative to shorten the execution time, improve equalization of the illumination map and provide a better image reconstruction. The approach could be applied to low-light video enhancement tasks and other dark or poor jobsite images for object detection processes.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 30 October 2023

Oluseyi Julius Adebowale and Justus Ngala Agumba

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to…

Abstract

Purpose

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to promote a healthy ecosystem and discourage practices that harm it. Building materials production significantly contributes to the emissions of greenhouse gases. This poses a threat to the ecosystem and prompts a growing demand for sustainable building materials (SBMs). The purpose of this study is to investigate SBMs to determine their utilization in construction operations and the potential impact their application could have on construction productivity.

Design/methodology/approach

A systematic review of the existing literature in the field of SBMs was conducted for the study. The search strings used were “sustainable” AND (“building” OR “construction”) AND “materials” AND “productivity”. A total of 146 articles were obtained from the Scopus database and reviewed.

Findings

Bio-based, cementitious and phase change materials were the main categories of SBMs. Materials in these categories have the potential to substantially contribute to sustainability in the construction sector. However, challenges such as availability, cost, expertise, awareness, social acceptance and resistance to innovation must be addressed to promote the increased utilization of SBMs and enhance construction productivity.

Originality/value

Many studies have explored SBMs, but there is a dearth of studies that address productivity in the context of SBMs, which leaves a gap in understanding. This study addresses this gap by drawing on existing studies to determine the potential implications that using SBMs could have on construction productivity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 October 2023

Yao Chao, Tao Liu and Liming Shen

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Abstract

Purpose

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Design/methodology/approach

A universal indentation calculation model is derived based on the system theory, and the deformation characteristics of each component are analyzed by the finite element (FE) model of a partial air-spring mattress under the initial air pressure of 0.01–0.025 MPa. Finally, the calculation error of the model is verified.

Findings

The results indicate that the indentation calculation model could describe the stain of a mattress given the load and the constitutive model of each element. In addition, the FE model of a partial air-spring mattress can be used for further simulation analysis with an error of 1.47–3.42 mm. Furthermore, the deformation of the series system is mainly contributed by the air spring and the components directly in contact with it, while the top component is mainly deflection deformation. In addition, the error of the calculation model is 2.17–5.59 mm on the condition of 0.01–0.025 MPa, satisfying the engineering application. Finally, the supine spinal alignment is successfully extracted from the mattress indentation.

Research limitations/implications

The limitation of this study is that it needs to verify the practicality of the indentation calculation model for the Bonnier spiral spring mattress. The main feature of the Bonnier spring mattress is that all springs are connected, so the mattress deflection and neighborhood effect are more significant than those of the air-spring mattress. Therefore, the applicability of the model needs to be tested. Moreover, it is worth further research to reduce the deformation error of each component.

Practical implications

As part of the series of studies on the intelligent air-spring mattress, the indentation-based evaluation method of spinal alignment in sleep postures will be studied for hardness and intelligent regulation based on this study.

Social implications

The results of this research are ultimately used for the intelligent adjustment of air-spring mattresses, which automatically adjusts the hardness according to the user's sleep postures and spinal alignment, thus maintaining optimal spinal biomechanics. The successful application of this result could improve the sleep health of the general public.

Originality/value

Based on the series system theory, an indentation calculation model for mattresses with arbitrary structure is proposed, overcoming the dependence of parameters on materials and their combinations when fitting the Burgers model. Further, the spinal alignment in supine posture is extracted from the indentation, laying a theoretical foundation for further recognition and adjustment of the spinal alignment of the intelligent mattress.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 April 2023

Chiara Bedon and Christian Louter

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in…

Abstract

Purpose

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in common loading and boundary conditions. Differing from earlier literature efforts, the present study elaborates on the load-bearing capacity, failure time and fire endurance of ordinary glass elements under fire exposure and sustained mechanical loads, with evidence of major trends in terms of loading condition and cross-sectional layout. Traditional verification approaches for glass in cold conditions (i.e. stress peak check) and fire endurance of load-bearing members (i.e. deflection and deflection rate limits) are assessed based on parametric numerical simulations.

Design/methodology/approach

The mechanical performance of structural glass elements in fire still represents an open challenge for design and vulnerability assessment. Often, special fire-resisting glass solutions are used for limited practical applications only, and ordinary soda-lime silica glass prevails in design applications for load-bearing members. Moreover, conventional recommendations and testing protocols in use for load-bearing members composed of traditional constructional materials are not already addressed for glass members. This paper elaborates on the fire endurance and failure detection methods for structural glass beams that are subjected to standard ISO time–temperature for fire exposure and in-plane bending mechanical loads. Fire endurance assessment methods are discussed with the support of Finite Element (FE) numerical analyses.

Findings

Based on extended parametric FE analyses, multiple loading, geometrical and thermo-mechanical configurations are taken into account for the analysis of simple glass elements under in-plane bending setup and fire exposure. The comparative results show that – in most of cases – thermal effects due to fire exposure have major effects on the actual load-bearing capacity of these members. Moreover, the conventional stress peak verification approach needs specific elaborations, compared to traditional calculations carried out in cold conditions.

Originality/value

The presented numerical results confirm that the fire endurance analysis of ordinary structural glass elements is a rather complex issue, due to combination of multiple aspects and influencing parameters. Besides, FE simulations can provide useful support for a local and global analysis of major degradation and damage phenomena, and thus support the definition of simple and realistic verification procedures for fire exposed glass members.

1 – 10 of 87