Search results

1 – 10 of 90
Article
Publication date: 31 May 2021

Brahim Nécira and Yacine Abadou

By its high fluidity, great deformability and rheological stability, the self-compacting mortar (SCM) is capable of ensuring the ability to be easily implemented without…

Abstract

Purpose

By its high fluidity, great deformability and rheological stability, the self-compacting mortar (SCM) is capable of ensuring the ability to be easily implemented without vibration. However, its formulation requires a large volume of fine materials with a high dosage of cement, which is necessary to ensure adequate workability and mechanical strengths, which is necessary to allow its flow. Current environmental considerations encourage reducing the production of cement, it is essential to use additions to replace the cement, because of their great availability and their moderate price. On another side, their use contributes to an economic sort to solve the problems related to the environment.

Design/methodology/approach

The formulations and characteristics of SCM made with two types of mineralogical sources (silica and limestone) were investigated. Different materials were used separately and in binary combinations; silica river sand (SRS), limestone quarry sand (LQS), silica fillers (SF) and limestone fillers (LF). The formulation starts with the self-compacting pastes (SCPs) then the SCMs at the SRS and the LQS whose the cement is partially replaced by volume contents of SF and LF with 15%, 30% and 45%.

Findings

The results obtained prove that the incorporation of LQS instead of SRS has a negative effect on the fluidity and deformability and a positive effect on the mechanical strengths of SCM. In addition, the incorporation of the SF and LF reduces the need for water and the saturation dose of superplasticizer in the pastes. Thus, the addition of the SF and LF in specific voluminal contents (15% SF and 30% LF) in the binder can have a beneficial effect on the parameters of the workability and the mechanical strengths of SCM. These results are very interesting to aspects such as technological, economic and environmental.

Originality/value

Influence of the different type of sands and fillers in improvements the properties of SCM made from various mineralogical sources.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2023

Hicri Yavuz

This study aims to determine the braking performance of limestone as a filler in brake friction materials.

Abstract

Purpose

This study aims to determine the braking performance of limestone as a filler in brake friction materials.

Design/methodology/approach

Samples containing limestone material (30-35-40%), which can be an alternative to brake friction material filler, were produced. The samples were weighed on precision scales, mixed homogeneously and produced using the hot molding method. The physical and tribological properties of the produced samples were determined, and their microscopic analyzes were made with scanning electron microscopy.

Findings

As the amount of limestone increased, the density of the samples decreased. The friction coefficient and wear rates were close to each other and within the optimum limits for all samples. Limestone materials can be used instead of barite materials studied in the literature on brake linings. Microcracks were observed only in samples containing 30% and 35% limestone in microscopic images.

Originality/value

In this study, the wear rate, coefficient of friction and microstructures on the friction surfaces of brake friction materials containing limestone were investigated. The usability of limestone as a filler in brake friction materials provides valuable information to researchers and industrial organizations in the brake friction material field.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 January 2021

Ahmed Attia, Salim Guettala and Rebih Zaitri

The purpose of this paper is to implement the mathematical models to predict concretes physico-mechanical characteristics made with binary and ternary sands using a mixture design…

Abstract

Purpose

The purpose of this paper is to implement the mathematical models to predict concretes physico-mechanical characteristics made with binary and ternary sands using a mixture design method. It is a new technique that optimizes mixtures without being obliged to do a lot of experiments. The goal is to find the law governing the responses depending on mixture composition and capable of taking into account the effect of each parameter separately and in interaction between several parameters on the characteristics studied.

Design/methodology/approach

Mixture design method was used for optimizing concretes characteristics and studying the effects of river sand (RS), dune sand (DS) and crushed sand (CS) in combinations of binary system and ternary on workability, the compressive and flexural strengths of concretes at 7 and 28 days. A total of 21 mixtures of concrete were prepared for this investigation. The modeling was carried out by using JMP7 statistical software.

Findings

Mixture design method made it possible to obtain, with good precision, the statistical models and the prediction curves of studied responses. The models have relatively good correlation coefficients (R2 = 0.70) for all studied responses. The use of binary and ternary mixtures sands improves the workability and their mechanical strengths. The obtained results proved that concrete, based on binary mixture C15, presents the maximum compressive strength (MCS) on 28 day with an improvement of around 20%, compared to reference concrete (C21). For ternary mixtures, MCS on 28 day was obtained for the mixture C10 with an improvement of around 15% compared to C21. Increase in compressive strength during the progress of hydration reactions was accompanied by an increase in the flexural strength, but in different proportions.

Originality/value

The partial incorporation of DS (= 40%) in the concrete formulation can provide a solution for some work in the southern regions of country. In addition, the CS is an interesting alternative source for replacing 60% of RS. The concrete formulation based on local materials is really capable of solving the economic and technical problems encountered in the building field, as well as environmental problems. Local resources therefore constitute an economic, technological and environmental alternative.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 January 2013

O.R. Batic, J.D. Sota, J.L. Fernández, N. Bellotti and R. Romagnoli

This research aims to study the influence of limestone filler on rebar corrosion.

Abstract

Purpose

This research aims to study the influence of limestone filler on rebar corrosion.

Design/methodology/approach

Mortar samples containing 35% calcareous filler and with a rebar inserted in the axis, were cast. Specimens were cured at the open air and during 28 days in lime water. After curing, they were submerged in two electrolytes (tap water and 3% NaCl) and corrosion parameters (corrosion potential and corrosion current) were monitored over time by d.c. techniques. Simultaneously, electrochemical noise measurements were carried out. After corrosion tests, rebars were pulled out by lateral compression, and their surface observed by scanning electron microscopy.

Findings

In general, carbonate additions impaired mortar protective properties, especially in the presence of chloride and changed the nature of the protective layer on rebars. The curing process did not introduce significant differences except for mortars with a high water cement ratio cured in lime water for which the beneficial effects of the simultaneous presence of carbonate and lime in the pore solution could be appreciated. The role of carbonate additions is to provide carbonate anions to passivate rebars. This passivation process caused corrosion rates not to be so high. Carbonate anions also deposited on oxide spots which were rendered passive but this process was not uniform. Certain areas on the rebar underwent intense carbonation while others showed increased corrosion rates.

Originality/value

There are not many corrosion studies about the influence of limestone filler on rebars corrosion. Particularly, this paper deals with mortars containing high percentages of carbonate additions. Results showed that the presence of this type of admixture changes the structure of the passive layer and, sometimes, may increase corrosion rates.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 August 2021

Abdelaziz Logbi, Mohamed Mani, Toufik Choungara and Abdelouahed Kriker

This paper aims to study the effect of mineral additions on the mortars’ physical, mechanical and durability properties. Two local mineral additions, considered inert, are chosen…

Abstract

Purpose

This paper aims to study the effect of mineral additions on the mortars’ physical, mechanical and durability properties. Two local mineral additions, considered inert, are chosen: limestone fillers from North-East of Algeria and natural dune sand from Algerian desert areas.

Design/methodology/approach

Two local additions are finely crushed to a fineness greater or equal to that of the used cement and incorporated into the mortars with predetermined rates; (0, 10%, 15% and 20%) compared to the cement weight to examine their effects on the mortars’ properties at different ages. Two conservation environments are chosen: freshwater as a neutral area and rising water table as an aggressive area to appreciate the effect of the two additions on physical and mechanical properties and durability.

Findings

The results showed the beneficial effect of these additions on compactness, mechanical resistance and durability toward the rising water table. The results have also allowed us to make an experimental comparison between the limestone addition which is commonly used in the Algerian cement industry and the dune sand, which is not yet well explored and exploited.

Originality/value

The added value of this study is the use of crushed dune sand which is a local addition of southern Algeria for improving the resistance of mortars and concrete toward the aggressiveness of rising water table which presents a major problem for the infrastructure of civil and public construction.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 June 2019

Faeze Nejati, Samira Ahmadi and S.A. Edalatpanah

Modern construction methods have been developed with the goal of reducing construction time as much as possible, which results in some situations during construction and within…

Abstract

Purpose

Modern construction methods have been developed with the goal of reducing construction time as much as possible, which results in some situations during construction and within the first few days after it, when concrete is subjected to exceptionally high loads. The precast concrete, which is the concrete in very early ages, may result in severe cracks or damages. In conventional construction projects, sometimes working with concrete, which had not reached its ultimate strength, is an unavoidable matter of fact. This paper aims to discuss these issues.

Design/methodology/approach

Researchers in the field of construction materials have done their best to make some changes in the different parts of the concrete in order to bring about reforms, based on the existing needs, and achieve new quality and primacy from concrete. One kind of concrete, the emergence of which dates back to many years ago, is self-compacting concrete. Thanks to its high efficiency for the parts with complex forms of high-density steel, this kind of concrete suggests new prospects.

Findings

This study aims at evaluating the effect of early loads on the 28-day compressive strength of concretes with zeolite and limestone powder under different curing conditions (wet or dry). In this regard, two self-compacting concrete mix designs with the same ratio of water to cementations materials and 0.4 percent and 10 percent zeolite have been considered; therefore, concrete cube samples with zeolite and limestone powder in different curing conditions at ages of three, one and seven days under preloading with 80–90 percent of compressive strength are damaged, and after curing in different conditions, their 28-day compressive strength is measured. According to the results, the recovery of the 28-day compressive strength of damaged samples, compared to that of intact samples, is possible in all curing conditions. The experiments that have been performed on concrete samples under dry and wet curing conditions show that the full recovery of compressive strength of damaged samples compared to that of intact ones happened only in preloaded samples at the age of one days, and in other ages (three and seven days) the 28-day strength reduction has occurred in damaged samples compared to the that in intact samples. The results of concrete samples with zeolite and without limestone powder at the age of one day indicate the greatest impact on other samples on the 28-day compressive strength of damaged samples compared to that of intact ones, occurring under dry condition.

Originality/value

This research analyzed and studied the influence under wet and dry curing conditions and the presence of limestone powder and zeolite fillers in recovering of the 28-day compressive strength of preloaded concrete samples at early stages (one, three and seven days) after the construction of the concrete.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 April 2021

Tarek Hadji, Salim Guettala and Michèle Quéneudec

The purpose of this paper is to present the modeling of statistical variation of experimental data using the design of experiments method to optimize the formulation of a high…

Abstract

Purpose

The purpose of this paper is to present the modeling of statistical variation of experimental data using the design of experiments method to optimize the formulation of a high performance concrete (HPC) using materials that are locally available in Algeria. For this, two mineral additions (natural pozzolana and limestone filler [LF]) were used. Both additions are added by substitution of cement up to 25%. To better appreciate the effect of replacing a part of cement by natural pozzolana and LF and to optimize their combined effect on the characteristics of HPC, an effective analytical method is therefore needed to reach the required objective.

Design/methodology/approach

The experimental part of the study consisted of substituting a portion of cement by various proportions of these additions to assess their effects on the physico-mechanical characteristics of HPC. A mixture design with three factors and five levels was carried out. The JMP7 software was used to provide mathematical models for the statistical variation of measured values and to perform a statistical analysis. These models made it possible to show the contribution of the three factors and their interactions in the variation of the response.

Findings

The mixture design approach made it possible to visualize the influence of LF and pozzolanic filler (PF) on the physico-mechanical characteristics of HPC, the developed models present good correlation coefficients (R2 = 0.82) for all studied responses. The obtained results indicated that it is quite possible to substitute a part of cement with LF and PF in the formulation of a HPC. Thanks to the complementary effect between the two additions, the workability could be improved and the strengths drop could be avoided in the short, medium and long term. The optimization of mixture design factors based on the mathematical models was carried out to select the appropriate factors combinations; a good agreement between the experimental results and the predicted results was obtained.

Originality/value

The coefficient of PF in Cs28 model is closer to that of LF than in Cs7 model, thanks to the complementary effect between LF and PF at the age of 28 days. It was found that the optimal HPC14 concrete (10%LF–5%PF) provides the best compromise between the three responses. It is also worth noting that the use of these two local materials can reduce the manufacturing costs of HPC and reduce carbon dioxide emissions into the atmosphere. This can be an important economic and environmental alternative.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 October 2021

Mohammed Seghir Ammari, Mohammed Bachir Tobchi, Yahia Amrani, Anouer Mim, Madani Bederina and Ahmida Ferhat

This study is part of the valorization of local materials and the reuse of industrial waste in construction. This study aims to improve the physical-mechanical properties of sand…

Abstract

Purpose

This study is part of the valorization of local materials and the reuse of industrial waste in construction. This study aims to improve the physical-mechanical properties of sand concrete. This work is a continuation of previous studies conducted on sand concrete, the purpose of which is to introduce industrial waste into this material. For this purpose, a glass waste in powder form is added.

Design/methodology/approach

This study is focused on the effect of adding glass powder (GP) whose mass percentage varies from 0 to 40% with an interval of 10% to target the right composition that ensures the best compromise between the characteristics studied.

Findings

The results found show that the workability and density of the studied concretes decreased with increasing GP dosage. Indeed, the optimal addition which constitutes the best compromise between the studied properties is 10% of GP. Improvements of up to about 9% in the case of flexural strength and about 18% in the case of compressive strength. The thermal conductivity has been reduced by 12.74%, the thermal diffusivity which characterizes the notion of thermal inertia has been reduced by about 4% and the specific heat mass has been reduced by 7.80%. Also, the shrinkage has been reduced by about 20%. The microstructure of the studied composite shows a good homogeneity between the aggregates. Finally, the addition of GP to sand concrete gives very encouraging results.

Originality/value

The interest of this study is in two parts. The first one is the exploitation of local materials: dune sand, river sand and limestone filler to meet the growing demand for construction materials. And the second one is the reuse of glass waste, in the form of powder (GP), to solve the environmental problem. All this participates in the improvement of the physical-mechanical properties of sand concrete and the extent of its response to the development of an economical structural concrete.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 July 2021

Taha Hocine Douara, Salim Guettala, Tarek Hadji and Ahmed Attia

The purpose of this study is to contribute with experimental study of the effects of binary and ternary combinations of river sand (RS), crushed sand (CS) and dune sand (DS) on…

Abstract

Purpose

The purpose of this study is to contribute with experimental study of the effects of binary and ternary combinations of river sand (RS), crushed sand (CS) and dune sand (DS) on the physical and mechanical performances of self-compacting concrete (SCC) subjected to acidic curing environments, HCl and H2SO4 solutions.

Design/methodology/approach

Five SCCs were prepared with the combinations 100% RS, 0.8RS + 0.2CS, 0.6RS + 0.2CS + 0.2DS, 0.6RS + 0.4DS and 0.6CS + 0.4DS. The porosity of sand, fluidity, deformability, stability, compressive strength and sorptivity coefficient were tested. SCCs cubic specimens with a side length of 10 cm were submerged in HCl and H2SO4 acids, wherein the concentration was 5%, for periods of 28, 90 and 180 days. The resistance to acid attack was evaluated by visual examination, mass loss and compressive strength loss.

Findings

The results showed that it is possible to partially substitute the RS with CS and DS in the SCC, without strongly affecting the fluidity, deformability, stability, compressive strength and durability against HCl and H2SO4 attack. The two combinations, 0.8RS + 0.2CS and 0.6RS + 0.2CS + 0.2DS, improved the compactness and the resistance to acid attacks of SCC. Consequently, the improvement in SCC compactness, by the combination of RS, CS and DS, decreased the sorptivity coefficient of SCC and increased its resistance to acid attacks, in comparison with that made only by RS.

Originality/value

The use of RS is experiencing a considerable increase in line with the development of the country. To satisfy this demand, it is necessary to substitute this sand with other materials more abundant. The use of locally available materials is a very effective way to protect the environment, improve the physico-mechanical properties and durability of SCC and it can be a beneficial economical alternative. Few studies have addressed the effect of the binary and ternary combination of RS, CS and DS on the resistance to acid attacks of SCC.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 September 1988

Although in recent years RBH has extended its activities into a wide range of chemicals and oil products, nevertheless, mineral extenders and fillers remain a very important…

Abstract

Although in recent years RBH has extended its activities into a wide range of chemicals and oil products, nevertheless, mineral extenders and fillers remain a very important interest of the business. The range of products handled includes:—

Details

Pigment & Resin Technology, vol. 17 no. 9
Type: Research Article
ISSN: 0369-9420

1 – 10 of 90