Search results

1 – 10 of 30
Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 9 January 2023

Ying Ling Jin, Fatimah De’nan, Kok Keong Choong and Nor Salwani Hashim

Cold-formed steel has been used extensively as secondary elements such as purlins and girts in building frames. Purlin is critical to the structure of the roof because it supports…

Abstract

Purpose

Cold-formed steel has been used extensively as secondary elements such as purlins and girts in building frames. Purlin is critical to the structure of the roof because it supports the weight of the roof deck and aids to make the entire roof structure more rigid. Furthermore, cold-formed steel purlin is a replacement for wood purlin because steel purlins are light weight and more economical. Hence, the purpose of this study to investigate the effect of opening due to torsion behaviour.

Design/methodology/approach

This analysis used cold-formed steel hat purlin with and without openings (WOs) under different opening shape, location and spacing by using finite element LUSAS software.

Findings

The finite element results showed that purlin with openings had higher angle of rotation than section WO, with a percentage difference of not more than 6%. When the opening was located at mid-span, the angle of rotation reduced. Angle of rotation increased when the opening spacing increased. Number of openings also affected the torsional behaviour of the purlin. Five opening shapes, which were circle, diamond, C-hexagon, square and elongated circle, were studied. Among all the shapes, purlin with diamond opening was more resistance to torsion.

Originality/value

The use of cold-formed steel section with web openings (rectangular or circular) is a practical solution when it is required to pass service ducts through the structural member. However, the presence of opening gives minor effect on the structural behaviour of cold-formed steel hat purlin.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 December 2023

Shian Li, Yuanzhe Cheng, Qiuwan Shen, Chongyang Wang, Chengdong Peng and Guogang Yang

The purpose of this study is to improve the thermal management of lithium-ion batteries. The phase change material (PCM) cooling does not require additional equipment to consume…

Abstract

Purpose

The purpose of this study is to improve the thermal management of lithium-ion batteries. The phase change material (PCM) cooling does not require additional equipment to consume energy. To improve the heat dissipation capacity of batteries, fins are added in the PCM to enhance the heat transfer process.

Design/methodology/approach

Computational fluid dynamics method is used to study the influence of number of vertical fins and ring fins (i.e. 2, 4, 6 and 8 vertical fins, and 2, 3, 4 and 5 ring fins) and the combination of them on the cooling performance.

Findings

The battery maximum temperature can be decreased by the PCM with vertical or ring fins, and it can be further decreased by the combination of them. The PCM with eight vertical fins and five ring fins reduces the battery maximum temperature by 5.21 K. In addition, the temperature and liquid-phase distributions of the battery and PCM are affected by the design of the cooling system.

Practical implications

This work can provide guidelines for the development of new and efficient PCM cooling systems for lithium-ion batteries.

Originality/value

The combination of PCM and fins can be used to reduce the battery maximum temperature and temperature difference.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 12 April 2024

Lara E. Yousif, Mayyadah S. Abed, Aseel B. Al-Zubidi and Kadhim K. Resan

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other…

Abstract

Purpose

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other countries. With almost 80% of the world’s amputees having below-the-knee amputations, Iraq has become a global leader in the population of amputees. Important components found in lower limb prostheses include the socket, pylon (shank), prosthetic foot and connections.

Design/methodology/approach

There are two types of prosthetic feet: articulated and nonarticulated. The solid ankle cushion heel foot is the nonarticulated foot that is most frequently used. The goal of this study is to use a composite filament to create a revolutionary prosthetic foot that will last longer, have better dorsiflexion and be more stable and comfortable for the user. The current study, in addition to pure polylactic acid (PLA) filament, 3D prints test items using a variety of composite filaments, such as PLA/wood, PLA/carbon fiber and PLA/marble, to accomplish this goal. The experimental step entails mechanical testing of the samples, which includes tensile testing and hardness evaluation, and material characterization by scanning electron microscopy-energy dispersive spectrometer analysis. The study also presents a novel design for the nonarticulated foot that was produced with SOLIDWORKS and put through ANSYS analysis. Three types of feet are produced using PLA, PLA/marble and carbon-covered PLA/marble materials. Furthermore, the manufactured prosthetic foot undergoes testing for dorsiflexion and fatigue.

Findings

The findings reveal that the newly designed prosthetic foot using carbon fiber-covered PLA/marble material surpasses the PLA and PLA/marble foot in terms of performance, cost-effectiveness and weight.

Originality/value

To the best of the author’s knowledge, this is the first study to use composite filaments not previously used, such as PLA/wood, PLA/carbon fiber and PLA/marble, to design and produce a new prosthetic foot with a longer lifespan, improved dorsiflexion, greater stability and enhanced comfort for the patient. Beside the experimental work, a numerical technique specifically the finite element method, is used to assess the mechanical behavior of the newly designed foot structure.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 January 2022

Mustafa S. Al-Khazraji, M. J. Jweeg and S. H. Bakhy

The purpose of this paper is to investigate the free vibration response of a laminated honeycomb sandwich panels (LHSP) for aerospace applications. Higher order shear deformation…

Abstract

Purpose

The purpose of this paper is to investigate the free vibration response of a laminated honeycomb sandwich panels (LHSP) for aerospace applications. Higher order shear deformation theory (HSDT) was simplified for the dynamic analysis of LHSP. Furthermore, the effects of honeycomb parameters on the value of natural frequency (NF) of vibration were explored.

Design/methodology/approach

This paper applies HSDT to the analysis of composite LHSP to derive four vibration differential equations of motion and solve it to find the NF of vibration. Two analytical models (Nayak and Meunier models) were selected from literature for comparison of the NF of vibration. In addition, a numerical model was built by using ABAQUS and the results were compared. Furthermore, parametric studies were conducted to explore the effect of honeycomb parameters on the value of the NF of vibration.

Findings

The present model is successful in simplifying HSDT for the analysis of LHSP. The first five natural frequencies of vibration were calculated analytically and numerically. In the parametric study, increasing core height or young’s modulus or changing laminate layup will increase the value of NF of vibration. Furthermore, increasing plate constraint (using clamped edge boundary condition) will increase the value of NF of vibrations.

Research limitations/implications

The current analysis is suitable for all-composite symmetric LHSP. However, for isotropic or non-symmetric materials, minor modifications might be adopted.

Originality/value

The application of simplified HSDT to the analysis of LHSP is one of the important values of this research. The other is the successful and complete dynamic analysis of all-composite LHSP.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 August 2022

Zhao Yuhang, Zhicai Yu, Hualing He and Huizhen Ke

This study aims to fabricate a multifunctional electromagnetic interference (EMI) shielding composite fabric with simultaneous high-efficiency photothermal conversion and Joule…

Abstract

Purpose

This study aims to fabricate a multifunctional electromagnetic interference (EMI) shielding composite fabric with simultaneous high-efficiency photothermal conversion and Joule heating performances.

Design/methodology/approach

A multifunctional polypyrrole (PPy) hydrogel/multiwalled carbon nanotube (MWCNT)/cotton EMI shielding composite fabric (hereafter denoted as PHMC) was prepared by loading MWCNT onto tannin-treated cotton fabric, followed by in situ crosslinking-polymerization to synthesize three-dimensional (3D) conductive networked PPy hydrogel on the surface of MWCNT-coated cotton fabric.

Findings

Benefiting from the unique interconnected 3D networked conductive structure of PPy hydrogel, the obtained PHMC exhibited a high EMI-shielding effectiveness vale of 48 dB (the absorbing electromagnetic wave accounted for 84%) within a large frequency range (8.2–12.4 GHz). Moreover, the temperature of the laminated fabric reached 54°C within 900 s under 15 V, and it required more than 100 s to return to room temperature (28.7°C). When the light intensity was adjusted to 150 mW/cm2, the PHMC temperature was about 38.2°C after lighting for 900 s, indicating high-efficiency electro-photothermal effect function.

Originality/value

This paper provides a novel strategy for designing a type of multifunctional EMI shielding composite fabric with great promise for wearable smart garments, EMI shielding and personal heating applications.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 January 2024

Yunfei Zou

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and…

Abstract

Purpose

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and load-bearing capacity. The research addresses the need for a more comprehensive analysis of non-uniform vertical strain responses and precise stress–strain models for FRP partially confined concrete.

Design/methodology/approach

DIC and strain gauges were employed to gather data during axial compression tests on FRP partially confined concrete specimens. Finite element analysis using ABAQUS was utilized to model partial confinement concrete with various constraint area ratios, ranging from 0 to 1. Experimental findings and simulation results were compared to refine and validate the stress–strain model.

Findings

The experimental results revealed that specimens exhibited strain responses characterized by either hardening or softening in both vertical and horizontal directions. The finite element analysis accurately reflected the relationship between surface constraint forces and axial strains in the x, y and z axes under different constraint area ratios. A proposed stress–strain model demonstrated high predictive accuracy for FRP partially confined concrete columns.

Practical implications

The stress–strain curves of partially confined concrete, based on Teng's foundation model for fully confined stress–strain behavior, exhibit a high level of predictive accuracy. These findings enhance the understanding of the mechanical behavior of partially confined concrete specimens, which is crucial for designing and assessing FRP confined concrete structures.

Originality/value

This research introduces innovative insights into the superior convenience and efficiency of partial wrapping strategies in the rehabilitation of beam-column joints, surpassing traditional full confinement methods. The study contributes methodological innovation by refining stress–strain models specifically for partially confined concrete, addressing the limitations of existing models. The combination of experimental and simulated assessments using DIC and FEM technologies provides robust empirical evidence, advancing the understanding and optimization of FRP-concrete structure performance. This work holds significance for the broader field of concrete structure reinforcement.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 December 2023

Lifeng Wang, Jiwei Bi, Long Liu and Ziwang Xiao

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state…

Abstract

Purpose

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state and strain distribution of low-height prestressed T-beams.

Design/methodology/approach

First, two 13 m-long full-size test beams were fabricated with different positions of prestressed steel bundles in the span. The load–deflection curves and failure patterns of each test beam were obtained through static load tests. Secondly, the test data were used to validate the finite element model developed to simulate the flexural behavior of low-height prestressed T-beams. Finally, the influence of different parameters (the number of prestressed steel bundles, initial prestress and concrete strength grade) on the flexural performance of the test beams is studied by using a finite element model.

Findings

The test results show that when the distance of the prestressed steel beam from the bottom height of the test beam increases from 40 to 120 mm, the cracking load of the test beam decreases from 550.00 to 450.00 kN, reducing by 18.18%, and the ultimate load decreases from 1338.15 to 1227.66 kN, reducing by 8.26%, therefore, the increase of the height of the prestressed steel beam reduces the bearing capacity of the test beam. The numerical simulation results show that when the number of steel bundles increases from 2 to 9, the cracking load increases by 183.60%, the yield load increases by 117.71% and the ultimate load increases by 132.95%. Therefore, the increase in the number of prestressed steel bundles can increase the cracking load, yield load and ultimate load of the test beam. When the initial prestress is from 695 to 1,395 MPa, the cracking load increases by 69.20%, the yield load of the bottom reinforcement increases by 31.61% and the ultimate load increases by 3.97%. Therefore, increasing the initial prestress can increase the cracking load and yield load of the test beam, but it has little effect on the ultimate load. The strength grade of concrete increases from C30 to C80, the cracking load is about 455.00 kN, the yield load is about 850.00 kN and the ultimate load is increased by 4.90%. Therefore, the improvement in concrete strength grade has little influence on the bearing capacity of the test beam.

Originality/value

Based on the experimental study, the bearing capacity of low-height prestressed T-beams with different prestressed steel beam heights is calculated by finite element simulation, and the influence of different parameters on the bearing capacity is discussed. This method not only ensures the accuracy of bearing capacity assessment, but also does not require a large number of samples and has a certain economy. The study of prestressed low-height T-beams is of great significance for understanding the principle and application of prestressed technology. Research on the mechanical behavior and performance of low-height prestressed T beams can provide a scientific basis and technical support for the design and construction of prestressed concrete structures. In addition, the study of prestressed low-height T-beams can also provide a reference for the optimization design and construction of other structural types.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 30