Search results

1 – 10 of over 4000
Article
Publication date: 9 October 2018

Oluwaseun Dosumu and Clinton Ohis Aigbavboa

This paper aims to investigate the level of awareness about, adoption of and willingness to adopt light steel (LS) for building projects. It also assessed the benefits, challenges…

Abstract

Purpose

This paper aims to investigate the level of awareness about, adoption of and willingness to adopt light steel (LS) for building projects. It also assessed the benefits, challenges and solutions to the challenges of adopting LS for building projects.

Design/methodology/approach

The quantitative (questionnaire) research method was used for the study. The research design was survey in nature. The whole-population cluster sampling technique was adopted. The clusters were the LS buildings from two (Western Cape and Gauteng) out of the eight provinces in South Africa. The respondents were the construction organizations that have executed LS building projects in the selected provinces. Hence, 56 firms filled and returned the questionnaire. Data analysis was done with frequency, mean scores, t-test and analysis of variance (normality of data distribution assumed).

Findings

Results indicated that, out of the 29 areas of application of LS identified in literature, respondents were aware of 11 areas, adopted LS for seven areas and were willing to adopt LS for six areas. Respondents also noted that 18 of the 25 identified benefits of LS were relevant to South Africa. Despite the benefits, few developers embrace it, it is a threat to suppliers’ and contractors’ businesses and it delays building approval due to low awareness.

Practical implication

The implication of the results is that there is low awareness about, adoption of and willingness to adopt LS for building projects in South Africa, and this may be due to the identified challenges. To boost the awareness about, adoption of and willingness to adopt LS, LS technologies need to be imported, LS warehouses should be provided in all cities and it must be ensured that LS building projects are cheaper than conventional buildings.

Originality/value

The value of the study is that the adoption of LS for building projects will improve the capacity of sustainable development.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 October 2022

Ali Rashidi, Wei Yin Yong, Duncan Maxwell and Yihai Fang

The construction industry has actively attempted to tackle the low-productivity issues arising from inefficient construction planning. It is imperative to understand how…

Abstract

Purpose

The construction industry has actively attempted to tackle the low-productivity issues arising from inefficient construction planning. It is imperative to understand how construction practitioners perceive technology integration in construction planning in light of emerging technologies. This study intended to uncover unique experimental findings by integrating 4D-building information modelling (BIM) to virtual reality (VR) technology during construction planning among construction professionals at light steel framing (LSF) projects.

Design/methodology/approach

The building industry participants were invited to provide inputs on two different construction planning methods: conventional and innovative methods. The conventional method involved the participants using traditional platforms such as 2D computer-aided design (CAD) and physical visualisation of paper-based construction drawings for the LSF assembly process with a Gantt Chart tool to complete construction planning-related tasks for the targeted project. Comparatively, participants are required to perform the same tasks using more innovative platforms like 4D-BIM in a VR environment.

Findings

A Charrette Test Method was used to validate the findings, highlighting an improvement in usability (+10.3%), accuracy (+89.1%) and speed (+30%) using 4D BIM with VR compared to the conventional paper-based method. The findings are also validated by a paired t-test, which is supported by the rationality of the same findings. This study posits positive results for construction planning through the utilisation of modern practices and technologies. These findings are significant for the global construction industry facing low productivity issues, delays and certainty in terms of building delivery timelines due to poor construction planning.

Originality/value

This new blend of technologies—combining 4D BIM and VR in industrialised construction projects—potentially directs future initiatives to drive the efficiency of construction planning in the building lifecycle. The interactive BIM-based virtual environment would purposefully transform construction planning practices in order to deliver modern and more certain building construction methods with a focus on prefabrication processes.

Article
Publication date: 21 January 2019

Danielle Ashcroft, Temitope Egbelakin, John Jing and Eziaku Onyeizu Rasheed

The purpose of this paper is to examine the economic viability of a new and innovative seismic damage resisting system (SDRS) device by conducting a feasibility study. The SDRS…

Abstract

Purpose

The purpose of this paper is to examine the economic viability of a new and innovative seismic damage resisting system (SDRS) device by conducting a feasibility study. The SDRS device has been patented and specifically designed to be implemented in multi-storey modular buildings in seismic regions such as New Zealand.

Design/methodology/approach

Using a case study approach, two sample modular multi-storey buildings were purposively selected for the study. A cost-comparison analysis was conducted using the SDRS device in the two buildings, by carrying out a measure and price exercise of the construction elements.

Findings

The research results showed that the SDRS device is an economically viable option for mitigating seismic damage in modular multi-storey buildings in New Zealand. There is an average of 7.34 per cent of cost reduction when SDRS is used in modular multi-storey buildings when compared to other seismic resistance systems such as base isolation, moment resisting frames and friction damper systems.

Practical implications

The economic viability of the SDRS presents an opportunity for its usage in modular design and construction of multi-storey buildings. SDRS system is also applicable to other building typologies and construction methods. The use of SDRS also aligns with the current national objective to provide more affordable and resilient housing within a limited time; the opportunity is considered significant in New Zealand, including for export and manufacturing.

Originality/value

The confirmation of the SDRS device’s economic feasibility is the original contribution of the authors.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 May 2023

Rakesh Sai Kumar Mandala and R. Ramesh Nayaka

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also…

Abstract

Purpose

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also providing long-term sustainable benefits that are desperately needed in today's construction industry.

Design/methodology/approach

The need for housing is growing worldwide, but traditional construction cannot cater to the demand due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society. This paper presented a state-of-the-art review of modern construction techniques practiced worldwide and their advantages in affordable housing construction by conducting a systematic literature review and applying the backward snowball technique. The paper reviews modern prefabrication techniques and interlocking systems such as modular construction, formwork systems, light gauge steel/cold form steel construction and sandwich panel construction, which have been globally well practiced. It was understood from the overview that modular construction, including modular steel construction and precast concrete construction, could reduce time and costs efficiently. Further enhancement in the quality was also noticed. Besides, it was observed that light gauge steel construction is a modern phase of steel that eases construction execution efficiently. Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time, which leads to faster construction than traditional formwork. However, the cost is subjected to the repetitions of the formwork. An interlocking system is an innovative approach to construction that uses bricks made of sustainable materials such as earth that conserve time and cost.

Findings

The study finds that the prefabrication techniques and interlocking system have a lot of unique attributes that can enable the modern construction sector to flourish. The study summarizes modern construction techniques that can save time and cost, enhancing the sustainability of construction practices, which is the need of the Indian construction industry in particular.

Research limitations/implications

This study is limited to identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Practical implications

Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time which leads to faster construction than traditional formwork.

Social implications

The need for housing is growing rapidly all over the world, but traditional construction cannot cater to the need due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society.

Originality/value

This study is unique in identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 30 April 2019

Mohammad Javad Kazemi, Shahabeddin Hatami, Abdolreza Zare and Ali Parvaneh

This paper aims to study the lateral behavior of cold-formed steel walls with K-shaped bracing by finite element modeling.

Abstract

Purpose

This paper aims to study the lateral behavior of cold-formed steel walls with K-shaped bracing by finite element modeling.

Design/methodology/approach

The braces which have the same section as those for studs and tracks are connected to the frame by screw connections. By pushover analysis, lateral performance of two frame categories, with different dimensions and bracing arrangements, is examined, and the force-displacement diagram and the ultimate strength of walls are extracted. Probable failure modes during lateral loading including distortional buckling of studs, buckling in braces and failure of connections are simulated in the numerical model, and some strengthening suggestions would be offered to prevent brittle failures and, therefore, to increase the lateral strength of the walls.

Findings

The strengthened walls are examined, and their seismic behavior is compared with the original walls. Finally, a parametric study is carried out to evaluate the effect of factors such as thickness of frame members, frame height and yield tension of members on lateral behavior of the shear walls.

Originality/value

In the present research, lateral strength and failure modes of nine types of cold-formed steel shear walls with different arrangements of K-shaped bracing are examined by non-linear finite element analysis, and a parametric study is carried out to extract the effect of the wall frame characteristics on the lateral behavior. Shear walls are classified into two series.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 June 2017

Sivakumar Kesawan and Mahen Mahendran

This paper aims to present an investigation conducted to evaluate the effects of important parameters affecting the structural fire performance of light gauge steel frame (LSF…

Abstract

Purpose

This paper aims to present an investigation conducted to evaluate the effects of important parameters affecting the structural fire performance of light gauge steel frame (LSF) walls. It also evaluates the applicability of commonly used critical hot flange temperature method to determine the fire resistance ratings (FRR) of different LSF walls.

Design/methodology/approach

The effects of important parameters such as stud section profiles and their dimensions, elevated temperature mechanical property reduction factors of the steel used, types of wall configurations and fire curves on the FRR of LSF walls were investigated. An extensive finite element analysis-based parametric study was conducted to evaluate their effects (finite element analysis – FEA). For this purpose, finite element models which were validated using the full-scale fire test results were used. Using the structural capacities obtained from FEAs, the load ratio versus FRR curves were produced for all the different LSF walls considered.

Findings

Stud depth and thickness significantly affected the fire performance of LSF walls because of the differences in temperature development pattern, thermal bowing deflections and the failure modes of stud. The FRR of LSF walls increased significantly when steel studs with higher elevated temperature mechanical property reduction factors were used. FRR significantly changed when realistic design fire curves were used instead of the standard fire curve. Furthermore, both the critical hot and average flange temperature methods were found to be unsuitable to predict the FRR of LSF walls.

Originality/value

The developed comprehensive fire performance data would facilitate the development of LSF walls with enhanced fire performance, and, importantly, it would facilitate and advance the successful applications of hollow flange channel section studs in LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Book part
Publication date: 21 November 2018

Jun Xiu Low, Poi Ngian Shek and Mahmood Md Tahir

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite…

Abstract

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite slabs system relies on the bonding action between the concrete and the steel deck, the shear connections and the cross-sectional resistance of steel beam. However, structural behaviour of composite slab is a complex phenomenon and therefore experimental study is often conducted to establish the actual strength of the structure under ultimate load capacity. The main objective of this study is to determine the structural behaviour of composite slab system until ultimate limit state. Total of two specimens are examined in order to obtain failure mechanism of the composite structure under full load capacity. A new design approach of composite slab for roofing system are proposed in this study to construct a composite slab system that can float in the water but not wash away by flood. The lightweight materials in this composite construction are cold-formed steel and foam concrete. The system focuses on the concept of Industrialised building system (IBS) to reduce the cost and construction time.

Details

Improving Flood Management, Prediction and Monitoring
Type: Book
ISBN: 978-1-78756-552-4

Keywords

Article
Publication date: 1 March 2011

R. Mark Lawson, Ray G. Ogden and Sunday Popo-Ola

Modular construction is widely used for residential buildings of 4 to 8 storeys. In the context of open building systems, modular construction provides a systemised approach to…

Abstract

Modular construction is widely used for residential buildings of 4 to 8 storeys. In the context of open building systems, modular construction provides a systemised approach to design in which the benefits of prefabrication are maximised. There is demand to extend this form of construction to more than 12 storeys for residential buildings. This paper presents a review of modular technologies, and describes load tests and analysis on light steel modular walls that are used to justify the use of light steel technology to support higher loads.

For taller modular buildings, the effect of installation and geometric inaccuracies must be taken into account and it is proposed that maximum out of verticality of a vertical group of modules is 50mm relative to ground datum. Using these geometric tolerances, the notional horizontal force used to evaluate stability of a group of modules should be taken as a minimum of 1% of the applied vertical load on the modules. Robustness to accidental load effects is important in all high-rise buildings and it is proposed that the tie force in the connections between modules should be taken as not less than 30% of the total vertical load applied to the module in both horizontal directions.

Details

Open House International, vol. 36 no. 1
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 17 January 2022

Irindu Upasiri, Chaminda Konthesingha, Anura Nanayakkara, Keerthan Poologanathan, Gatheeshgar Perampalam and Dilini Perera

Light-Gauge Steel Frame (LSF) structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel

Abstract

Purpose

Light-Gauge Steel Frame (LSF) structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel lipped channel sections negative fire performance, cavity insulation materials are utilized in the LSF configuration to enhance its fire performance. The applicability of lightweight concrete filling as cavity insulation in LSF and its effect on the fire performance of LSF are investigated under realistic design fire exposure, and results are compared with standard fire exposure.

Design/methodology/approach

A Finite Element model (FEM) was developed to simulate the fire performance of Light Gauge Steel Frame (LSF) walls exposed to realistic design fires. The model was developed utilising Abaqus subroutine to incorporate temperature-dependent properties of the material based on the heating and cooling phases of the realistic design fire temperature. The developed model was validated with the available experimental results and incorporated into a parametric study to evaluate the fire performance of conventional LSF walls compared to LSF walls with lightweight concrete filling under standard and realistic fire exposures.

Findings

Novel FEM was developed incorporating temperature and phase (heating and cooling) dependent material properties in simulating the fire performance of structures exposed to realistic design fires. The validated FEM was utilised in the parametric study, and results exhibited that the LSF walls with lightweight concrete have shown better fire performance under insulation and load-bearing criteria in Eurocode parametric fire exposure. Foamed Concrete (FC) of 1,000 kg/m3 density showed best fire performance among lightweight concrete filling, followed by FC of 650 kg/m3 and Autoclaved Aerated Concrete (AAC) 600 kg/m3.

Research limitations/implications

The developed FEM is capable of investigating the insulation and load-bearing fire ratings of LSF walls. However, with the availability of the elevated temperature mechanical properties of the LSF wall, materials developed model could be further extended to simulate the complete fire behaviour.

Practical implications

LSF structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel-lipped channel sections negative fire performance, cavity insulation materials are utilised in the LSF configuration to enhance its fire performance. The lightweight concrete filling in LSF is a novel idea that could be practically implemented in the construction, which would enhance both fire performance and the mechanical performance of LSF walls.

Originality/value

Limited studies have investigated the fire performance of structural elements exposed to realistic design fires. Numerical models developed in those studies have considered a similar approach as models developed to simulate standard fire exposure. However, due to the heating phase and the cooling phase of the realistic design fires, the numerical model should incorporate both temperature and phase (heating and cooling phase) dependent properties, which was incorporated in this study and validated with the experimental results. Further lightweight concrete filling in LSF is a novel technique in which fire performance was investigated in this study.

Details

Journal of Structural Fire Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 March 2017

Anthony Deloge Ariyanayagam and Mahen Mahendran

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel

Abstract

Purpose

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel frame (LSF) walls exposed to realistic design fire curves.

Design/methodology/approach

The energy-based time equivalent method was developed based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of the standard fire time – temperature curve. The FRR predicted by the energy-based method for LSF wall configurations exposed to both rapid and prolonged fires were compared with those from fire design rules and finite element analyses (FEA).

Findings

The proposed energy method can be used to obtain the FRR of LSF walls in case of prolonged fires and cannot be used for rapid fires as the computed FRRs were higher than the results from FEA and fire design rules due to the influence of thermal bowing and its magnification effects at a high temperature gradient across the studs for rapid fires.

Originality/value

The energy-based time equivalent method was developed based on equal fire severity principles. Three different wall configurations were considered and exposed to both rapid and prolonged fires. The FRR obtained from the energy-based method were compared with fire design rules and FEA results to assess the use of the energy-based method to predict the FRR of LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 4000