Search results

1 – 10 of over 5000
Article
Publication date: 7 September 2012

Sarbjeet Singh and Sunand Kumar

The purpose of this paper is to evaluate the effect of main parameters and their interactions on the workers' Lifting Index in a steel rolling mill.

396

Abstract

Purpose

The purpose of this paper is to evaluate the effect of main parameters and their interactions on the workers' Lifting Index in a steel rolling mill.

Design/methodology/approach

NIOSH (National Institute for Occupational Safety and Health) lifting equation has been used to evaluate the risk of lifting tasks with respect to low back injury under varying load (10, 15, 20 kg), frequency (2, 3, 4 lifts/min), and twisting angle (0, 30, 45 degree).

Findings

The level of importance of the parameters on lifting index at origin and destination has been determined using analysis of variance (ANOVA).The analysis draws on lifting parameters and uses both main effects and interactions to describe the variation in Lifting Index and to identify the social influence associated with back injury. The interactions between object weight and twisting angle and object weight and lifting frequency turn out to be significant (p<0.05), whereas the interaction between twisting angle and lifting frequency is less significant (p=0.061).

Research limitations/implications

The study includes a specific location (steel rolling mills located in Jammu region of India) only.

Practical implications

The findings suggest that focus should be made on all lifting parameters, rather than sole emphasis on the load to be lifted.

Originality/value

The paper supports the view that load, twisting angle and lifting frequency greatly influence the physical stressfulness of the task. It is suggested that the workplace should be designed for negligible twisting and moderate lifting frequency, so as to have minimum Lifting Index.

Details

Journal of Manufacturing Technology Management, vol. 23 no. 7
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 10 July 2017

Maxwell Fordjour Antwi-Afari, Heng Li, David John Edwards, Erika Anneli Pärn, JoonOh Seo and Arnold Wong

Repetitive lifting tasks have detrimental effects upon balance control and may contribute toward fall injuries, yet despite this causal linkage, risk factors involved remain…

Abstract

Purpose

Repetitive lifting tasks have detrimental effects upon balance control and may contribute toward fall injuries, yet despite this causal linkage, risk factors involved remain elusive. The purpose of this paper is to evaluate the effects of different weights and lifting postures on balance control using simulated repetitive lifting tasks.

Design/methodology/approach

In total, 20 healthy male participants underwent balance control assessments before and immediately after a fatiguing repetitive lifting tasks using three different weights in a stoop (ten participants) or a squat (ten participants) lifting posture. Balance control assessments required participants to stand still on a force plate with or without a foam (which simulated an unstable surface) while center of pressure (CoP) displacement parameters on the force plate was measured.

Findings

Results reveal that: increased weight (but not lifting posture) significantly increases CoP parameters; stoop and squat lifting postures performed until subjective fatigue induce a similar increase in CoP parameters; and fatigue adversely effected the participant’s balance control on an unstable surface vis-à-vis a stable surface. Findings suggest that repetitive lifting of heavier weights would significantly jeopardize individuals’ balance control on unstable supporting surfaces, which may heighten the risk of falls.

Originality/value

This research offers an entirely new and novel approach to measuring the impact that different lifting weights and postures may have upon worker stability and consequential fall incidents that may arise.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 23 February 2018

Maxwell Fordjour Antwi-Afari, Heng Li, David John Edwards, Erika Anneli Pärn, De-Graft Owusu-Manu, Joonoh Seo and Arnold Yu Lok Wong

Work-related low back disorders (LBDs) are prevalent among rebar workers although their causes remain uncertain. The purpose of this study is to examine the self-reported…

Abstract

Purpose

Work-related low back disorders (LBDs) are prevalent among rebar workers although their causes remain uncertain. The purpose of this study is to examine the self-reported discomfort and spinal biomechanics (muscle activity and spinal kinematics) experienced by rebar workers.

Design/methodology/approach

In all, 20 healthy male participants performed simulated repetitive rebar lifting tasks with three different lifting weights, using either a stoop (n = 10) or a squat (n = 10) lifting posture, until subjective fatigue was reached. During these tasks, trunk muscle activity and spinal kinematics were recorded using surface electromyography and motion sensors, respectively.

Findings

A mixed-model, repeated measures analysis of variance revealed that an increase in lifting weight significantly increased lower back muscle activity at L3 level but decreased fatigue and time to fatigue (endurance time) (p < 0.05). Lifting postures had no significant effect on spinal biomechanics (p < 0.05). Test results revealed that lifting different weights causes disproportional loading upon muscles, which shortens the time to reach working endurance and increases the risk of developing LBDs among rebar workers.

Research limitations/implications

Future research is required to: broaden the research scope to include other trades; investigate the effects of using assistive lifting devices to reduce manual handling risks posed; and develop automated human condition-based solutions to monitor trunk muscle activity and spinal kinematics.

Originality/value

This study fulfils an identified need to study laboratory-based simulated task conducted to investigate the risk of developing LBDs among rebar workers primarily caused by repetitive rebar lifting.

Details

Construction Innovation, vol. 18 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 7 January 2019

Qin Lian, Xiao Li, Dichen Li, Heng Gu, Weiguo Bian and Xiaoning He

Path planning is an important part of three-dimensional (3D) printing data processing technology. This study aims to propose a new path planning method based on a discontinuous…

Abstract

Purpose

Path planning is an important part of three-dimensional (3D) printing data processing technology. This study aims to propose a new path planning method based on a discontinuous grid partition algorithm of point cloud for in situ printing.

Design/methodology/approach

Three types of parameters (i.e. structural, process and path interruption parameters) were designed to establish the algorithm model with the path error and the computation amount as the dependent variables. The path error (i.e. boundary error and internal error) was further studied and the influence of each parameter on the path point density was analyzed quantitatively. The feasibility of this method was verified by skin in situ printing experiments.

Findings

Path point density was positively correlated with Grid_size and negatively related to other parameters. Point_space, Sparsity and Line_space had greater influence on path point density than Indentation and Grid_size. In skin in situ printing experiment, two layers of orthogonal printing path were generated, and the material was printed accurately in the defect, which proved the feasibility of this method.

Originality/value

This study proposed a new path planning method that converted 3D point cloud data to a printing path directly, providing a new path planning solution for in situ printing. The discontinuous grid partition algorithm achieved controllability of the path planning accuracy and computation amount that could be applied to different processes.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 July 2020

Qiaolei Sun, Liang He, Ding Feng, Xinlong Chen, Liangliang Ding and Yiliu Tu

As the excessive lifting force can lead to catwalk rollover and well site accidents, the lifting process boundary conditions and structural parameters have a significant effect…

Abstract

Purpose

As the excessive lifting force can lead to catwalk rollover and well site accidents, the lifting process boundary conditions and structural parameters have a significant effect lifting force, it is important to analysis the structural parameters on the maximum lifting force in the lifting process of power catwalk.

Design/methodology/approach

A new model is proposed to analyze the influence of structure parameters on its lifting force for lifting power catwalk in this paper, and the geometric and dynamic equations are established according to the different boundary conditions in different stages. In addition, the establishment of dynamics equations is based on D'Alembert's principle. To solve the model, dynamic analysis software is developed, which uses c # call MATLAB to solve the geometric and dynamic equations. The maximum lifting force is analyzed and optimized according to the software, the influence of structural parameters on the maximum lifting force is obtained and the correctness of the optimization is proved by experiments.

Findings

The best value of offset e is 0. The length of L22 should as small as possible while the installation size of the end of the conveying arm are guaranteed. The length of L1 should as small as possible while ensuring the not exceed the maximum value. The maximum lifting force remain the same in the second phase, the maximum lifting force decreases with the increase of Lcp, Lcpshould as small as possible. The maximum pressure of the hydraulic oil dropped by an average of 13.62% under optimized parameters.

Practical implications

This paper provides a theoretical basis for the selection of hydraulic winch, which also provides the theoretical basis and data support for the design and optimization of the structural parameters of the power catwalk.

Social implications

This research has industrial applications in SJ Petroleum Machinery CO.LTD, SINOPEC (China) .CANRIG, North Rig, TESCO, Sichuan HONGHUA petroleum equipment CO.LTD of CNPC., Baoji Oil field Machinery CO.LTD, SJ Petroleum Machinery Co. LTD of SINOPEC, Yantai Jereh Oilfield Services Group CO.LTD, Nanyang clips oil equipment (group) CO. LTD, etc are the likely users.

Originality/value

A new model is proposed to analyze the lifting force of lifting power catwalk. The model takes into account the inertia force of the structure, development of dynamics software and analysis and optimization of structural parameters. The maximum lifting force is analyzed and optimized according to the software, the influence of structural parameters on the maximum lifting force is obtained and the correctness of the optimization is proved by experiments.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 October 2023

Shengxian Huang, Huihe Qiu and Ying Wang

Since most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable…

Abstract

Purpose

Since most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable deformation airfoil for fixed-wing micro air vehicle (MAV), this paper proposes an improved airfoil design method of fixed-wing MAV based on the profile data of S5010 airfoil.

Design/methodology/approach

Combined with the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil. Then, according to the influence law of single parameter variation on the aerodynamic performance of the airfoil, the original airfoil is synthetically deformed by changing multiple parameters.

Findings

By comparing the aerodynamic performance of the multi-parameter deformed airfoil with the original airfoil, it is found that the lift coefficient of the multi-parameter deformed airfoil changes from negative to positive value when AOA = 0°. When AOA = 2°, the lift coefficient growth rate is the largest, which is 47.27%, and the lift-to-drag ratio is increased by 50.00%. At other angles of attack, the lift, drag, and torque coefficients of the multi-parameter deformed airfoil are optimized to some extent.

Originality/value

Combined the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 June 2013

Yihua Cao and Xu Zhu

The purpose of this paper is to describe the effects of characteristic geometric parameters on parafoil aerodynamic performance by using computational fluid dynamics (CFD…

Abstract

Purpose

The purpose of this paper is to describe the effects of characteristic geometric parameters on parafoil aerodynamic performance by using computational fluid dynamics (CFD) technique.

Design/methodology/approach

The main characteristic geometric parameters cover the planform geometry, arc‐anhedral angle, basic airfoil and leading‐edge cut. By using the CFD technique, a large number of numerical parafoil models with different geometric parameters are developed to study the correlations between these parameters and parafoil aerodynamic performance.

Findings

The CFD technique is feasible and effective to study the effects of characteristic geometric parameters on parafoil aerodynamic performance in three‐dimensional (3‐D) flowfield condition. The planform geometry can affect the aerodynamic performance obviously. An increase in arc‐anhedral angle decreases the lift of a parafoil but has little effect on lift‐drag ratio. The model with smaller leading‐edge radius and thinner thickness of parafoil section achieves larger lift‐drag ratio. The leading‐edge cut has little effect on lift but increase drag dramatically; meanwhile, its effect on flowfield is confined to the nearby region of leading edge.

Practical implications

The presented 3‐D numerical simulation results of parafoil models are shown to have good agreement with the tunnel test data in general trend; meanwhile, considering its relatively low‐cost, the CFD method could be further used to predict coefficients in pre‐research or at non‐experimental conditions.

Originality/value

The paper can form the foundation of further studies on parafoil aerodynamic performance with different geometric parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 October 2018

Tugrul Oktay, Seda Arik, Ilke Turkmen, Metin Uzun and Harun Celik

The aim of this paper is to redesign of morphing unmanned aerial vehicle (UAV) using neural network for simultaneous improvement of roll stability coefficient and maximum lift

Abstract

Purpose

The aim of this paper is to redesign of morphing unmanned aerial vehicle (UAV) using neural network for simultaneous improvement of roll stability coefficient and maximum lift/drag ratio.

Design/methodology/approach

Redesign of a morphing our UAV manufactured in Faculty of Aeronautics and Astronautics, Erciyes University is performed with using artificial intelligence techniques. For this purpose, an objective function based on artificial neural network (ANN) is obtained to get optimum values of roll stability coefficient (Clβ) and maximum lift/drag ratio (Emax). The aim here is to save time and obtain satisfactory errors in the optimization process in which the ANN trained with the selected data is used as the objective function. First, dihedral angle (φ) and taper ratio (λ) are selected as input parameters, C*lβ and Emax are selected as output parameters for ANN. Then, ANN is trained with selected input and output data sets. Training of the ANN is possible by adjusting ANN weights. Here, ANN weights are adjusted with artificial bee colony (ABC) algorithm. After adjusting process, the objective function based on ANN is optimized with ABC algorithm to get better Clβ and Emax, i.e. the ABC algorithm is used for two different purposes.

Findings

By using artificial intelligence methods for redesigning of morphing UAV, the objective function consisting of C*lβ and Emax is maximized.

Research limitations/implications

It takes quite a long time for Emax data to be obtained realistically by using the computational fluid dynamics approach.

Practical implications

Neural network incorporation with the optimization method idea is beneficial for improving Clβ and Emax. By using this approach, low cost, time saving and practicality in applications are achieved.

Social implications

This method based on artificial intelligence methods can be useful for better aircraft design and production.

Originality/value

It is creating a novel method in order to redesign of morphing UAV and improving UAV performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 June 2019

Mehmet Konar

The purpose of this paper is to present a novel approach based on the differential search (DS) algorithm integrated with the adaptive network-based fuzzy inference system (ANFIS…

Abstract

Purpose

The purpose of this paper is to present a novel approach based on the differential search (DS) algorithm integrated with the adaptive network-based fuzzy inference system (ANFIS) for unmanned aerial vehicle (UAV) winglet design.

Design/methodology/approach

The winglet design of UAV, which was produced at Faculty of Aeronautics and Astronautics in Erciyes University, was redesigned using artificial intelligence techniques. This approach proposed for winglet redesign is based on the integration of ANFIS into the DS algorithm. For this purpose, the cant angle (c), the twist angle (t) and taper ratio (λ) of winglet are selected as input parameters; the maximum value of lift/drag ratio (Emax) is selected as the output parameter for ANFIS. For the selected input and output parameters, the optimum ANFIS parameters are determined by the DS algorithm. Then the objective function based on optimum ANFIS structure is integrated with the DS algorithm. With this integration, the input parameters for the Emax value are obtained by the DS algorithm. That is, the DS algorithm is used to obtain both the optimization of the ANFIS structure and the necessary parameters for the winglet design. Thus, the UAV was reshaped and the maximum value of lift/drag ratio was calculated based on new design.

Findings

Considerable improvements on the max E are obtained through winglet redesign on morphing UAVs with artificial intelligence techniques.

Research limitations/implications

It takes a long time to obtain the optimum Emax value by the computational fluid dynamics method.

Practical implications

Using artificial intelligence techniques saves time and reduces cost in maximizing Emax value. The simulation results showed that satisfactory Emax values were obtained, and an optimum winglet design was achieved. Thus, the presented method based on ANFIS and DS algorithm is faster and simpler.

Social implications

The application of artificial intelligence methods could be used in designing more efficient aircrafts.

Originality/value

The study provides a new and efficient method that saves time and reduces cost in redesigning UAV winglets.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Mojtaba Tahani, Mehran Masdari and Ali Bargestan

This paper aims to investigate the aerodynamic characteristics as well as static stability of wing-in-ground effect aircraft. The effect of geometrical characteristics, namely…

Abstract

Purpose

This paper aims to investigate the aerodynamic characteristics as well as static stability of wing-in-ground effect aircraft. The effect of geometrical characteristics, namely, twist angle, dihedral angle, sweep angle and taper ratio are examined.

Design/methodology/approach

A three-dimensional computational fluid dynamic code is developed to investigate the aerodynamic characteristics of the effect. The turbulent model is utilized for characterization of flow over wing surface.

Findings

The numerical results show that the maximum change of the drag coefficient depends on the angle of attack, twist angle and ground clearance, in a decreasing order. Also, it is found that the lift coefficient increases as the ground clearance, twist angle and dihedral angle decrease. On the other hand, the sweep angle does not have a significant effect on the lift coefficient for the considered wing section and Reynolds number. Also, as the aerodynamic characteristics increase, the taper ratio befits in trailing state.

Practical implications

To design an aircraft, the effect of each design parameter needs to be estimated. For this purpose, the sensitivity analysis is used. In this paper, the influence of all parameter against each other including ground clearance, angle of attack, twist angle, dihedral angle and sweep angle for the NACA 6409 are investigated.

Originality/value

As a summary, the contribution of this paper is to predict the aerodynamic performance for the cruise condition. In this study, the sensitivity of the design parameter on aerodynamic performance can be estimated and the effect of geometrical characteristics has been investigated in detail. Also, the best lift to drag coefficient for the NACA 6409 wing section specifies and two types of taper ratios in ground effect are compared.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 5000