Search results

1 – 10 of over 19000
Article
Publication date: 21 August 2007

Shiaw‐Wen Tien, Chung‐Ching Chiu, Yi‐Chan Chung, Chih‐Hung Tsai and Chin‐Fa Chang

Life Cycle Assessment (LCA) aims to analyze possible impact upon manufacturing process and availability of products, and also study the environmental considerations and potential…

Abstract

Life Cycle Assessment (LCA) aims to analyze possible impact upon manufacturing process and availability of products, and also study the environmental considerations and potential influence during entire life cycle ranging from procurement, production and utilization to treatment (namely, from cradle to tomb). Based on high‐density polyethylene (HDPE) pipe manufacturing of company A, this case study would involve evaluation of environmental influence during the production process. When the manufacturing process has been improved during “production process” and “forming cooling” stage, it is found that capital input on “electric power” and “water supply” could be reduced, thus helping to sharpen the competitive power of company A, and also ensure sustainable economic and industrial development in accordance with national policies on environmental protection.

Details

Asian Journal on Quality, vol. 8 no. 2
Type: Research Article
ISSN: 1598-2688

Keywords

Open Access
Article
Publication date: 22 March 2024

Abdul Rauf, Daniel Efurosibina Attoye and Robert H. Crawford

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received…

Abstract

Purpose

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received little attention. We aimed to address this knowledge gap, particularly in the context of the UAE and investigated the embodied energy associated with the use of concrete and other materials commonly used in residential buildings in the hot desert climate of the UAE.

Design/methodology/approach

Using input–output based hybrid analysis, we quantified the life-cycle embodied energy of a villa in the UAE with over 50 years of building life using the average, minimum, and maximum material service life values. Mathematical calculations were performed using MS Excel, and a detailed bill of quantities with >170 building materials and components of the villa were used for investigation.

Findings

For the base case, the initial embodied energy was 57% (7390.5 GJ), whereas the recurrent embodied energy was 43% (5,690 GJ) of the life-cycle embodied energy based on average material service life values. The proportion of the recurrent embodied energy with minimum material service life values was increased to 68% of the life-cycle embodied energy, while it dropped to 15% with maximum material service life values.

Originality/value

The findings provide new data to guide building construction in the UAE and show that recurrent embodied energy contributes significantly to life-cycle energy demand. Further, the study of material service life variations provides deeper insights into future building material specifications and management considerations for building maintenance.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 August 2022

Toshit Jain, Jinesh Kumar Jain, Rajeev Agrawal and Shubha Johri

Environmental impact and changes are becoming essential in textile and yarn industries, where reliable measurement of parameters related to processing harmful substances needs to…

Abstract

Purpose

Environmental impact and changes are becoming essential in textile and yarn industries, where reliable measurement of parameters related to processing harmful substances needs to be examined. Such findings can be cumulated using smart assessment like life cycle analysis. The ecological impact category, supply chain, and climate-changing factors were considered for the necessary assessment.

Design/methodology/approach

This paper applies the Life Cycle Assessment technique in the textile and yarn industry to estimate critical environmental potentials. The critical input for the fabric and yarn industry was put in the GaBi software model to estimate various environmental potentials.

Findings

Global warming potential, electricity, and raw cotton consumption in the fabric and yarn industry were critical concerns where attention should be focused on minimizing environmental potentials from cradle to gate assessment.

Research limitations/implications

This qualitative study is made via the industry case-wise inputs and outputs, which can vary with demographic conditions. Some machine and human constraints have not been implemented in modelling life cycle model for smart simulation. Smart simulation helps in linking different parameters and simulates their combined effects on the product life cycle.

Practical implications

This modelling approach will help access pollution constituents in different supply chain production processes and optimize them simultaneously.

Originality/value

The raw data used in this analysis are collected from an Indian small scale textile industry. In the textile fabrication industry, earlier assessments were carried out in cotton generation, impact of PET, cradle to grave assessment of textile products and garment processing only. In this research the smart model is drawn to consider each input parameter of yarn and textile fabric to determine the criticality of each input in this assessment. This article mainly talks about life cycle and circular supply assessment applied to first time for both cotton to yarn processing and yarn to fabric industry for necessary estimation of environment potentials.

Details

Management of Environmental Quality: An International Journal, vol. 34 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 5 April 2018

Ali Tighnavard Balasbaneh, Abdul Kadir Bin Marsono and Emad Kasra Kermanshahi

The purpose of this study is to describe life cycle cost (LCC) and life cycle assessment (LCA) evaluation for single story building house in Malaysia. Two objective functions…

839

Abstract

Purpose

The purpose of this study is to describe life cycle cost (LCC) and life cycle assessment (LCA) evaluation for single story building house in Malaysia. Two objective functions, namely, LCA and LCC, were evaluated for each design and a total of 20 alternatives were analyzed. Two wall schemes that have been adopted from two different recent studies toward mitigation of climate change require clarification in both life cycle objectives.

Design/methodology/approach

For this strategic life cycle assessment, Simapro 8.3 tool has been chosen over a 50-year life span. LCC analysis was also used to determine not only the most energy-efficient strategy, but also the most economically feasible one. A present value (PV)-based economic analysis takes LCC into account.

Findings

The results will appear in present value and LC carbon footprint saving, both individually and in combination with each other. Result of life cycle management shows that timber wall−wooden post and beam covered by steel stud (W5) and wood truss with concrete roof tiles (R1) released less carbon emission to atmosphere and have lower life cycle cost over their life span. W5R1 releases 35 per cent less CO2 emission than the second best choice and costs 25 per cent less.

Originality/value

The indicator assessed was global warming, and as the focus was on GHG emissions, the focus of this study was mainly in the context of Malaysian construction, although the principles apply universally. The result would support the adoption of sustainable building for building sector.

Details

Construction Innovation, vol. 18 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 February 2019

Salvinder Singh and Shahrum Abdullah

The purpose of this paper is to present the durability analysis in predicting the reliability life cycle for an automobile crankshaft under random stress load using the stochastic…

Abstract

Purpose

The purpose of this paper is to present the durability analysis in predicting the reliability life cycle for an automobile crankshaft under random stress load using the stochastic process. Due to the limitations associated with the actual loading history obtained from the experimental analysis or due to the sensitivity of the strain gauge, the fatigue reliability life cycle assessment has lower accuracy and efficiency for fatigue life prediction.

Design/methodology/approach

The proposed Markov process embeds the actual maximum and minimum stresses by a continuous updating process for stress load history data. This is to reduce the large credible intervals and missing loading points used for fatigue life prediction. With the reduction and missing loading intervals, the accuracy of fatigue life prediction for the crankshaft was validated using the statistical correlation properties.

Findings

It was observed that fatigue reliability corresponded well by reporting the accuracy of 95–98 per cent with a mean squared error of 1.5–3 per cent for durability and mean cycle to failure. Hence, the proposed fatigue reliability assessment provides an accurate, efficient, fast and cost-effective durability analysis in contrast to costly and lengthy experimental techniques.

Research limitations/implications

An important implication of this study is durability-based life cycle assessment by developing the reliability and hazard rate index under random stress loading using the stochastic technique in modeling for improving the sensitivity of the strain gauge.

Practical implications

The durability analysis is one of the fundamental attributes for the safe operation of any component, especially in the automotive industry. Focusing on safety, structural health monitoring aims at the quantification of the probability of failure under mixed mode loading. In practice, diverse types of protective barriers are placed as safeguards from the hazard posed by the system operation.

Social implications

Durability analysis has the ability to deal with the longevity and dependability of parts, products and systems in any industry. More poignantly, it is about controlling risk whereby engineering incorporates a wide variety of analytical techniques designed to help engineers understand the failure modes and patterns of these parts, products and systems. This would enable the automotive industry to improve design and increase the life cycle with the durability assessment field focussing on product reliability and sustainability assurance.

Originality/value

The accuracy of the simulated fatigue life was statistically correlated with a 95 per cent boundary condition towards the actual fatigue through the validation process using finite element analysis. Furthermore, the embedded Markov process has high accuracy in generating synthetic load history for the fatigue life cycle assessment. More importantly, the fatigue reliability life cycle assessment can be performed with high accuracy and efficiency in assessing the integrity of the component regarding structural integrity.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 January 2024

Olubukola Tokede and Anastasia Globa

This paper bridges the gap between the theory and practice by developing a life cycle sustainability tracker (LCST). The study is seeking to proffer solutions to an observed…

86

Abstract

Purpose

This paper bridges the gap between the theory and practice by developing a life cycle sustainability tracker (LCST). The study is seeking to proffer solutions to an observed shortcoming of conventional life cycle sustainability assessment (LCSA) communication platforms. Notably, the static nature of the information provided on such platforms has made it difficult for them to be used for real-time decision-making and predictions. The main aim of this paper is to develop a LCST that facilitates a dynamic visualisation of life cycle sustainability results and allows for an integrated benchmark across the dimensions of sustainability.

Design/methodology/approach

The study leverages the model development capabilities of the design science research strategy in accomplishing a dynamic and novel communication platform. A life cycle thinking methodology and appropriate multicriteria decision approach (MCDA) is applied to accomplish a comprehensive, streamlined and replicable approach in mapping and tracking the progress of sustainable development goals (SDGs) in the National Infrastructure Pipeline (NIP) projects in India.

Findings

It was found that: (1) The use of the LCST tracker provides a dynamic and holistic insight into the key LCSA indicators with clearly defined benchmarks to assess the impact on the SDG 11, (2) The NIP projects achieve an upward trend across all the regions, and the percentage of opportunities ranges from 11 to 24%, with the South experiencing the highest growth and the North having the minimal increase in percentage and (3) The assessment score (52–58%) provides performance metrics that align well with the LCST – which ranges between “Fair” and “Average” for all the regions in India.

Originality/value

The novelty of this research is that the LCST provides a transparent and harmonised approach to reporting on the LCSA results. The LCST utilises heat maps and radial mapping to achieve an intuitive display of large amounts of highly heterogeneous data, thus allowing the synthesis of large sets of information compactly and with coherence. Progress towards the SDGs change on a yearly basis; hence, a dynamic LCSA tool provides a timely and the valuable context to map and track performance across different regions and contexts.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 September 2020

Thanu HP, Rajasekaran C and Deepak MD

Construction industry is one of the leading causes of pollution generation in today's context. But the fact that the development of construction industry leads to the country's…

Abstract

Purpose

Construction industry is one of the leading causes of pollution generation in today's context. But the fact that the development of construction industry leads to the country's economic and social development cannot be unobserved. Hence, there is a need to develop a sustainable construction methodology, and while doing so, measures must be considered so as to not disturb the natural habitats. With the greater prominence shown toward the concept of green and sustainable construction developments, various tools have been developed in recent years in order to measure the performance of such sustainable and green buildings. In the Indian context, the assessment tools developed to measure the performance of the green building are found to be scanty in addressing various economic and social impacts.

Design/methodology/approach

This study aims at developing a building performance score (BPS) model concerning the sustainability model built on the triple bottom priorities considering all the three vital components, viz. environmental, economic and social factors. In this study, the different phases involved in the complete life cycle of the project are recognized and then all the phases are assessed considering all the three major components mentioned in the BPS model.

Findings

The outcome of this study specifies that various indicators, such as the topographical and climate change, health and safety of the construction workers, project management consultancy, risk management, security measures and solid waste management, form a chief source of a sustainable building, and these indicators are not being assessed in the existing assessment tools. Also, consideration of environmental, economic and social factors is also equally important in construction industry. Moreover, these indicators are also required to be assessed and included in the evaluation process while assessing the performance of the building.

Originality/value

The BPS model developed in the study will assist to improve in assessing the building performance with respect to all indicators in the complete life cycle of the project.

Article
Publication date: 1 April 2005

Julia Pflieger, Matthias Fischer, Thilo Kupfer and Peter Eyerer

Aims to investigate the contribution of life cycle assessment to global sustainability reporting of organizations.

4872

Abstract

Purpose

Aims to investigate the contribution of life cycle assessment to global sustainability reporting of organizations.

Design/methodology/approach

Assesses the current state of global sustainability reporting and points out future trends of reporting within the three dimensions of economy, environment and society.

Findings

The internal and external communication of the corporate performance is a very important company way to sustainable development. The communication of the corporate performance comprises the strategic and operational goals, the corporate performance data on inventory level, the translation of the inventory data to sustainability core indicators as well as the performance evaluation in terms of sustainability. The future trends on policy level and in customer demands are moving towards a product‐related consideration of sustainability issues, the inclusion of indirect effects over the life cycle in addition to the site‐related effects of companies’ activities, the analysis of results on impact level as well as the automation of data administration.

Originality/value

The methodology of life cycle assessment (LCA) provides the main starting‐point for global sustainability reporting including the emerging future trends in this context. This paper shows that results of impact assessments as central parts of an LCA are a good basis for creating significant indicators for sustainability reports.

Details

Management of Environmental Quality: An International Journal, vol. 16 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 29 September 2023

Li Wang, Yanhong Lv, Tao Wang, Shuting Wan and Yanling Ye

The purpose of this research is to address the existing gap in the study of construction and demolition waste (C&DW) by focusing on its impact on human health throughout the…

Abstract

Purpose

The purpose of this research is to address the existing gap in the study of construction and demolition waste (C&DW) by focusing on its impact on human health throughout the entire life cycle. And this research provides a comprehensive assessment model that incorporates the release of gaseous pollutants and particulate matter during the whole life cycle of C&DW, thereby contributing to a more holistic understanding of its impact on human health.

Design/methodology/approach

The research was conducted in two stages. Firstly, the quantitative model framework of pollutants emitted by C&DW was established. Three types of pollutants were considered, namely nitrogen dioxide (NO2), sulfur dioxide (SO2) and inhalable particulate matter (PM10). Second, disability-adjusted life year (DALY) and willingness to pay (WTP) assessments were used to provide a monetary quantified health impact for pollutants released by C&DW.

Findings

The results show that the WTP value of PM10 is the highest among all pollutants and 8.68E+07 dollars/a, while the WTP value in the disposal stage accounts for the largest proportion compared to the generation and transportation stage. These findings emphasize the importance of PM10 and C&DW treatment stage for pollutant treatment.

Originality/value

The results of this study are of great significance for the management department to optimize the construction management scheme to reduce the total amount of pollutants produced by C&DW and its harm to human health. Meanwhile, this study fills the gap in existing research on the impact assessment of C&DW on human health throughout the whole life cycle, and provides reference and basis for future research and policy formulation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 19 November 2018

Davide Settembre Blundo, Fernando Enrique García Muiña, Martina Pini, Lucrezia Volpi, Cristina Siligardi and Anna Maria Ferrari

The purpose of this paper is to analyse the production cycle of glazed porcelain stoneware, from the extraction of raw materials to the packaging of the finished product, with the…

3833

Abstract

Purpose

The purpose of this paper is to analyse the production cycle of glazed porcelain stoneware, from the extraction of raw materials to the packaging of the finished product, with the aim of verifying the effects of integrating an environmental impact assessment into the decision-making process for managing the life cycle, to make it economically and ecologically sustainable, in a holistic approach along the supply-chain.

Design/methodology/approach

The research is performed using the life cycle assessment and life cycle costing methodologies, to identify environmental impacts and costs, that occur during extraction of raw materials, transportation, ceramic tiles production, material handling, distribution and end-of-life stages within a cradle to grave perspective.

Findings

Through the use of a comprehensive analysis of the environmental impact assessment and related externalities, three possible strategic options to improve the environmental performance and costs of ceramic tile production were formulated, leveraging sustainability as a competitive advantage.

Research limitations/implications

This exploratory research opens future lines of investigation, the first of which is to confirm the technological feasibility and market responsiveness to the three strategic solutions hypothesised thanks to the use of an innovative eco-design technique.

Originality/value

The research has allowed testing and validating the tools of environmental impact assessment (life cycle assessment) and economic impact assessment (life cycle costing as structured methodologies in a life cycle management framework, to help companies implement competitive strategies based on sustainability.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 12 no. 3
Type: Research Article
ISSN: 2398-7812

Keywords

1 – 10 of over 19000