Search results

1 – 10 of 450
Article
Publication date: 1 April 2014

M.A. Antar, Rached Ben-Mansour and Salem Ahmed Al-Dini

There are industrial applications for varying speed lid-driven flow and heat transfer such as the float glass process where the glass film stretches or thickens depending on the…

Abstract

Purpose

There are industrial applications for varying speed lid-driven flow and heat transfer such as the float glass process where the glass film stretches or thickens depending on the desired thickness. Hence the tin cavity underneath or the nitrogen cavity above is being driven by a variable speed. The purpose of this paper is to simulate such behavior.

Design/methodology/approach

Numerical solution of variable speed lid-driven cavity is carried out with thermal radiation being considered using control volume approach and staggered grid and applying the SIMPLE algorithm. Transient simulation is used for 2D model in the present study. Second order upwind schemes were used for discretization of momentum, energy equations and time.

Findings

Under laminar conditions, thermal radiation plays a significant role in the heat transfer characteristics of the lid-driven cavity. This effect is more significant for blackbody radiation and decreases as the surface emissivity decreases. Nusselt number (Nu) behavior lies between these two limiting case profiles considering constant speed profiles of both maximum and minimum lid velocities, respectively. In addition, local Nu values at the tip where higher than those at the top of the cavity that is stagnant.

Research limitations/implications

The study is limited to laminar flow case.

Practical implications

The applications of this study can be found in float glass process where the glass film stretches or thickens depending on the desired thickness. Hence the tin cavity underneath or the nitrogen cavity above is being driven by a variable speed. Another application involves casting of plastic films. The molten polymer leaves the die with a considerable thickness and high temperature. The film is then trenched to reach its final thickness. In this case, usually there is no actual cavity above or below the film but one can approximate the problem as such. Other similar applications do exist in food drying and processing where the conveyer belt is in portions and their speed may not be the same in different section of the processing oven.

Originality/value

To the best of the authors knowledge, no study in the literature addressed the effect of thermal radiation in lid-driven cavities with variable speed

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2018

Faicel Hammami, Nader Ben-Cheikh, Brahim Ben-Beya and Basma Souayeh

This paper aims to analyze the effect of aspect ratio A and aspect velocity ratio a on the bifurcation occurrence phenomena in lid-driven cavity by using finite volume method…

Abstract

Purpose

This paper aims to analyze the effect of aspect ratio A and aspect velocity ratio a on the bifurcation occurrence phenomena in lid-driven cavity by using finite volume method (FVM) and multigrid acceleration. This study has been performed for certain pertinent parameters; a wide range of the Reynolds number values has been adopted, and aspect ratios ranging from 0.25 to 1 and various velocity ratios from 0.25 to 0.825 have been considered in this investigation. Results show that the transition to the unsteady regime follows the classical scheme of Hopf bifurcation, giving rise to a perfectly periodic state. Flow periodicity has been verified through time history plots for the velocity component and phase-space trajectories as a function of Reynolds number. Velocity profile for special case of a square cavity (A = 1) was found to be in good agreement between current numerical results and published ones. Flow characteristics inside the cavity have been presented and discussed in terms of streamlines and vorticity contours at a fixed Reynolds number (Re = 5,000) for various aspect ratios (a = 0).

Design/methodology/approach

The numerical method is based on the FVM and multigrid acceleration.

Findings

Computations have been investigated for several Reynolds numbers and aspect ratios A (0.25, 0.5, 0.75, 0.825 and 1). Besides, various velocity ratios (a = 0.25, 0.5, 0.75 and 0.825) at fixed aspect ratios (A = 0.25, 0.5 and 0.75) were considered. It is observed that the transition to the unsteady regime follows the classical scheme of Hopf bifurcation, giving rise to a perfectly periodic state. Flow periodicity is verified through time history plots for velocity components and phase-space trajectories.

Originality/value

The bifurcations between steady and unsteady states are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2017

Chao Wang, Jinju Sun and Yan Ba

The purpose of this paper is to develop a Vortex-In-Cell (VIC) method with the semi-Lagrangian scheme and apply it to the high-Re lid-driven cavity flow.

259

Abstract

Purpose

The purpose of this paper is to develop a Vortex-In-Cell (VIC) method with the semi-Lagrangian scheme and apply it to the high-Re lid-driven cavity flow.

Design/methodology/approach

The VIC method is developed for simulating high Reynolds number incompressible flow. A semi-Lagrangian scheme is incorporated in the convection term to produce unconditional stability, which gets rid of the constraint of the convection Courant-Friedrichs-Lewy (CFL) condition; the adaptive time step is used to maintain the numerical stability of the diffusion term; and the velocity boundary condition is readily converted to the vorticity formulation to suit discontinuous boundary treatment. The VIC simulation results are compared with those produced by other gird methods reported in open literature studies.

Findings

The lid-driven cavity flow is simulated from Re = 100 to 100,000. Similar vortex birth mechanisms are exhibited though, but distinct flow characteristics are revealed. At Re = 100 to 7,500, the cavity flow is confirmed steady. At Re = 10,000, 15,000 and 20,000, the cavity flow is periodical with a primary vortex held spatially at the center. In particular, at Re = 100,000 highly turbulent characteristics is first revealed and an analogous primary vortex is formed but in motion rather than stationary, which is caused by the considerable flow separation at all the boundaries.

Originality/value

In the lid-driven cavity, the flow becomes extremely complex and highly turbulent at Re = 100,000, and the analogous primary vortex structure is observed. Boundary layer separation is observed at all walls, producing small vortices and causing the displacement of the analogous primary vortex. Such a finding original and has not yet been reported by other investigators. It may provide a basis for conducting in-depth studies of the lid-driven cavity flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow…

Abstract

Purpose

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.

Design/methodology/approach

The dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.

Findings

The roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 ≤ Ri ≤ 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of φ = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.

Originality/value

The analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 December 2021

Mingming Ge, Xin-Lei Zhang, Kaleb Brookshire and Olivier Coutier-Delgosha

The openings on aircraft structures can be modeled from an aerodynamical point of view as lid-driven cavities (LDC). This paper aims to show the primary verification and…

Abstract

Purpose

The openings on aircraft structures can be modeled from an aerodynamical point of view as lid-driven cavities (LDC). This paper aims to show the primary verification and validation (V&V) process in computational fluid dynamics (CFD, and to investigate the influences of numerical settings on the efficiency and accuracy for solving the LDC problem.

Design/methodology/approach

To dig into the details of CFD approaches, this paper outlines the design, implementation, V&V and results of an efficient explicit algorithm. The parametric study is performed thoroughly focusing on various iteration methods, grid density discretization terms and Reynolds number effects.

Findings

This study parameterized the numerical implementation which provides empirical insights into how computational accuracy and efficiency are affected by changing numerical settings. At a low Reynolds number (not over 1,000), the time-derivative preconditioning is necessary, and k = 0.1 can be the optimal value to guarantee the efficiency, as well as the stability. A larger artificial viscosity (c = 1/16) would relieve the calculating oscillation issue but proportionally increase the discretization error. Furthermore, the iteration method and the mesh quality are two key factors that affect the convergence efficiency, thus need to be selected “wisely”.

Practical implications

The study shows how numerical implementation can enhance an accurate and efficient solution. This workflow can be used to determine the best parameter settings whenever CFD researchers applying this LDC problem as a complementary design tool for testing newly developed solvers.

Originality/value

The studied LDC problem is representative of CFD analysis in real aircraft structures. These numerical simulations provide a cost-effective and convenient tool to understand the parameter sensitivity, solution receptivity and physics of the CFD process.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 December 2018

Ammar I. Alsabery, Taher Armaghani, Ali J. Chamkha, Muhammad Adil Sadiq and Ishak Hashim

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The…

Abstract

Purpose

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Design/methodology/approach

The current work investigates the problem of mixed convection heat transfer in a double lid-driven square cavity in the presence of magnetic field. The used cavity is filled with water-Al2O3 nanofluid based on Buongiorno’s two-phase model. The bottom horizontal wall is maintained at a constant high temperature and moves to the left/right, while the top horizontal wall is maintained at a constant low temperature and moves to the right/left. The left and right vertical walls are thermally insulated. The dimensionless governing equations are solved numerically using the Galerkin weighted residual finite element method.

Findings

The obtained results show that the heat transfer rate enhances with an increment of Reynolds number or a reduction of Hartmann number. In addition, effects of thermophoresis and Brownian motion play a significant role in the growth of convection heat transfer.

Originality/value

According to above-mentioned studies and to the authors’ best knowledge, there has no study reported the MHD mixed convection heat transfer in a double lid-driven cavity using the two-phase nanofluid model. Thus, the authors of the present study believe that this work is valuable. Therefore, the aim of this comprehensive numerical study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2020

Jing-Kui Zhang, Miao Cui, Ben-Wen Li and Ya-Song Sun

The purpose of this paper is to develop a combined method for three-dimensional incompressible flow and heat transfer by the spectral collocation method (SCM) and the artificial…

157

Abstract

Purpose

The purpose of this paper is to develop a combined method for three-dimensional incompressible flow and heat transfer by the spectral collocation method (SCM) and the artificial compressibility method (ACM), and further to study the performance of the combined method SCM-ACM for three-dimensional incompressible flow and heat transfer.

Design/methodology/approach

The partial differentials in space are discretized by the SCM with Chebyshev polynomial and Chebyshev–Gauss–Lobbatto collocation points. The unsteady artificial compressibility equations are solved to obtain the steady results by the ACM. Three-dimensional exact solutions with trigonometric function form and exponential function form are constructed to test the accuracy of the combined method.

Findings

The SCM-ACM is developed successfully for three-dimensional incompressible flow and heat transfer with high accuracy that the minimum value of variance can reach. The accuracy increases exponentially along with time marching steps. The accuracy is also improved exponentially with the increasing of nodes before stable accuracy is achieved, while it keeps stably with the increasing of the time step. The central processing unit time increases exponentially with the increasing of nodes and decreasing of the time step.

Research limitations/implications

It is difficult for the implementation of the implicit scheme by the developed SCM-ACM. The SCM-ACM can be used for solving unsteady impressible fluid flow and heat transfer.

Practical implications

The SCM-ACM is applied for two classic cases of lid-driven cavity flow and natural convection in cubic cavities. The present results show good agreement with the published results with much fewer nodes.

Originality/value

The combined method SCM-ACM is developed, firstly, for solving three-dimensional incompressible fluid flow and heat transfer by the SCM and ACM. The performance of SCM-ACM is investigated. This combined method provides a new choice for solving three-dimensional fluid flow and heat transfer with high accuracy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2013

A. Malleswaran, S. Sivasankaran and M. Bhuvaneswari

The main objective of the present study is to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid‐driven cavity.

Abstract

Purpose

The main objective of the present study is to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid‐driven cavity.

Design/methodology/approach

The non‐dimensional equations are discretized by the finite‐volume method. The upwind scheme and the central difference scheme are implemented for the convection and the diffusion terms, respectively.

Findings

On increasing the Richardson number, the overall heat transfer is increased whether the length and the location of the heater is considered or not. Among the various lengths of the heater considered, the total heat transfer is better only for the length LH=1/3 of the heater if it is extended from top or bottom of the cavity. In the case of location of the heater, the average heat transfer enhances for center location of the heater. Existence of the magnetic field suppresses the convective heat transfer and the fluid flow.

Practical implications

The results can be used in the cooling of electronic devices and heat transfer improvement in heat exchangers.

Originality/value

The numerical results obtained here focus on the detailed investigation of flow and temperature field in a discretely heated lid‐driven square cavity. The findings will be helpful in many applications such as heat exchangers and cooling of electronic devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2016

Shainath Ramesh Kalamkar and Jadav Chandra Mandal

The purpose of this paper is to present two low diffusive convective-pressure flux split finite volume algorithms for solving incompressible flows in artificial compressibility…

323

Abstract

Purpose

The purpose of this paper is to present two low diffusive convective-pressure flux split finite volume algorithms for solving incompressible flows in artificial compressibility framework.

Design/methodology/approach

The present method follows the framework similar to advection upwind splitting method of Liou and Steffen for compressible flows which is used by Vierendeels et al. to solve incompressible flow equations. Instead of discretizing the total inviscid flux using upwind scheme, the inviscid flux is first split into convective and pressure parts, and then discretized the two parts differently. The convective part is discretized using upwind method and the pressure part using central differencing. Since the Vierendeels type scheme may not be able to capture the divergence free velocity field due to the presence of artificial dissipation term, a strategy to progressively withdraw the dissipation with time step is proposed here that can ascertain the divergence free velocity condition to the level of residual error. This approach helps in reducing the amount of numerical dissipation due to upwind discretization, which is evident from the numerical test examples.

Findings

Upwind treatment of only the convective part of the inviscid flux terms, instead of the whole inviscid flux term, leads to more accurate solutions even at relatively coarse grids, which is substantiated by numerical test examples.

Research limitations/implications

The method is presently applicable to Cartesian grid.

Originality/value

Although similar formulation is reported by Vierendeels et al., no detailed study of the accuracy is presented. Discretization and solution reconstructions used in the present approach differ from the approach reported by Vierendeels et al. A modification to Vierendeels type scheme is proposed that can help in achieving divergence free velocity condition. Finally the efficacy of the present approach to produce very accurate solutions even on coarse grids is successfully demonstrated using a few benchmark problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2016

Gholamreza Kefayati

The thermal-diffusion (Soret) and the diffusion-thermo (Dufour) effects play a crucial role in double diffusive mixed convection in a lid-driven cavity; but they have not been…

Abstract

Purpose

The thermal-diffusion (Soret) and the diffusion-thermo (Dufour) effects play a crucial role in double diffusive mixed convection in a lid-driven cavity; but they have not been studied properly by researchers. The purpose of this paper is to investigate effects of Soret and Dufour parameters on double diffusive laminar mixed convection of shear-thinning and Newtonian fluids in a two-sided lid-driven cavity.

Design/methodology/approach

Finite Difference Lattice Boltzmann method (FDLBM) has been applied to solve the complex problem. This study has been conducted for the certain pertinent parameters of Richardson number (Ri=0.00062-1), power-law index (n=0.2-1), Soret parameter (Sr=−5-5) as Dufour number effects have been investigated from Dr=−5 to 5 at Buoyancy ratio of N=1 and Lewis number of Le=5.

Findings

Results indicate that the augmentation of Richardson number causes heat and mass transfer to decrease. The fall of the power-law index declines heat and mass transfer at Ri=0.00062 and 0.01 in various Dufour and Soret parameters. At Ri=1, the heat and mass transfer rise with the increment of power-law index for Dr=0 and Sr=0. The least effect of power-law index on heat and mass transfer among the studied Richardson numbers was observed at Ri=1. The positive Dufour numbers augment the heat transfer gradually as the positive Soret numbers enhance the mass transfer. The Dr=−5 and Sr=−5 provokes the negative average Nusselt and Sherwood numbers, respectively, to be generated. The least magnitude of the average Nusselt and Sherwood numbers were obtained at Dr=−1 and Sr=−1, respectively.

Originality/value

Soret and Dufour effects in double diffusive mixed convection has not been studied in a lid-driven cavity. In addition. this study has been conducted also for shear-thinning fluids.

Details

Engineering Computations, vol. 33 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 450